
x
2

x1

?

+ +
+

+

–

–

–

–

Figure 1.1: A demonstration of classifi-
cation problem. Each data point is de-
fined by two features (x1 and x2). The
aim is to predict the binary label, + or
−, of an unknown data point based on
a model learned from a labeled training
set.

1 A broad class of machine learning
methods, as the ones we will study in
this lecture, assume that the data to
be classified is independent and identi-
cally distributed (i.i.d.). In contrast, some
tasks have ‘structured’ outputs, such as
a sequence. We will introduce com-
mon methods for predicting sequences
in later lectures.

1 Classification

As we briefly discussed before, a supervised machine learning method
is called classification if the outcome variable is a categorical vari-
able. Figure ?? depicts a binary classification problem in a two-
dimensional input space. Given the input variables, or features, the
task is to predict the class label (represented as + or − in the fig-
ure). Problems that are suited for classification is more widespread
in NLP in comparison to regression. The following are only a few of
the problems that can be solved by classification methods.

• Spam detection

• Author identification, author profiling (e.g., prediction gender of
the author of a text)

• Sentiment analysis, e.g., determining whether a product review
positive or negative

• Topic classification, e.g., of news articles

Note that some these can be cast into regression problems. For exam-
ple, sentiment analysis may be formulated as predicting a scale from
negative to positive. Some other problems, such as POS tagging,
require classifying a sequence of input items rather than predicting
each target individually.1 In this lecture, we will focus on simple
classification problems, where the aim is to assign instances we want
to classify to two or more class labels independently. Our discus-
sion will mainly focus on binary classification, where there are only
two outcomes. We will go through a few ways to generalize it to
multi-class classification.

There are numerous classification methods with their strengths
and weaknesses. Covering a large number of them, or an in-depth
introduction of any of them is out of the scope of this course. We
introduce only three simple but important methods, namely, percep-
tron, logistic regression and naive Bayes, and focus on issues that arise
during the use of classification methods in general. We leave the
discussion of artificial neural networks to another lecture.

1.1 Perceptron

The perceptron has an important place in the history of machine
learning. It is a basic binary classification method from 1950’s. How-

Draft lecture notes. Version: db84779@2021-06-13; classification.tex cb

6 statistical nlp: course notes

2 Like modern artificial neural net-
works, however, the relation to the bi-
ological neuron is rather weak. We take
perceptron as a practical machine learn-
ing method, rather than a model of bio-
logical systems.

x2

x1

...

xk

w
1

w2

w
k

y

x0 = 1

w
0

Figure 1.2: A schematic description of
perceptron.

3 The way class labels assigned to −1

or +1 does not make any difference
for the method. The assignment may
sometimes be meaningful (e.g., in sen-
timent analysis it makes sense to as-
sign positive values to the positive sen-
timents). In many problems, however,
there are also no reasons to choose one
of the classes as positive (e.g., in gender
prediction).

ever, it still finds its use in some modern/recent methods, it is (his-
torically) related to modern artificial neural networks, and under-
standing the perceptron is also helpful for understanding some of
the more recent and successful classification methods (e.g., support
vector machines). Perceptron takes its inspiration from the biologi-
cal neuron.2 It receives a number of numeric inputs, multiplies each
input with an associated weight, and outputs +1 (or ‘fires’) if the
weighted sum is greater than 0, otherwise it outputs −1. A schematic
description of perceptron is presented in Figure ??.

Formally, the output (y) of the perceptron is defined as

y = f

(
k∑
i

wixi

)

where,

f(x) =

+1 if
∑k
i wixi > 0

−1 otherwise
.

The weightswi, . . . ,wk are the parameters of the model that we want
to estimate, or learn from data. Like in regression, an intercept term
is often included, denoted as w0 in Figure ?? and the equation above,
in which case we also assume a constant input of x0 = 1. Noticing
that the weighted sum above is the dot product of the parameter
and the input vectors helps us interpret the perceptron learning al-
gorithm geometrically. The final function f(x), which is called an
activation function in some contexts, is simply a step function, map-
ping its input to two values.

So far, we defined how perceptron predicts the output class when
the weights are known. In simple words, if the sum of the weighted
inputs is negative, the prediction is the negative class, if the sum is
positive, the prediction is the positive class.3 A perceptron model
with a fixed set of weights is not interesting, nor is it practical to set
the weights manually to solve any real-world problem. What makes
perceptron interesting, like in any machine learning method, is that
the parameters (the weight vector w) are learned from the data, and
there is a well-known algorithm for learning the weights.

The perceptron algorithm learns only from its mistakes, correct pre-
dictions do not contribute to learning. Similar to the gradient descent
algorithm we discussed earlier, the perceptron algorithm is an itera-
tive algorithm. The perceptron error is defined as

E(w) =
∑

i∈misclassified

−yiwxi . (1.1)

The geometric interpretation of this formula is straightforward. Note
that the last part in the sum is a dot product. For normalized (unit)
vectors, it will tend to 1 if the direction of the weight vector and
the input vector are similar, and it will tend to −1 if they point to
opposite directions. Also noting that the class label yi is either 1 or
−1, the formula tells us that we are looking for a weight vector that is

classification 7

4 Another (probably more) common
strategy in many iterative training al-
gorithms is to process the data in mini
batches, a fixed number of training in-
stances at a time. The online algorithm
is equivalent to a batch algorithm with
a batch size of one.

‘prototypical’ for the positive examples. The error will be low if the
input instance is similar to the weight vector, and the gold-standard
label is positive, or input and the weight vectors are dissimilar and
the gold-standard label is negative. Hence, the error promotes a
solution where the weight vector is maximally similar to the positive
examples, and minimally similar to the negative examples.

There is an algorithm that provably converges to an optimum so-
lution with 0 classification error under certain conditions. Before
discussing how we actually do this, it is useful to introduce a useful
alternation. The error function as defined Equation ?? calculates the
error for all misclassified examples. In practice, often an online ver-
sion of the algorithm is used, where at each iteration a single misclas-
sified example is picked, and the weight values are updated before
picking another misclassified example. This procedure is often more
efficient and easy to grasp for most people, and we will continue our
discussion based on the online version of the algorithm.4

We start the search procedure with a random weight assignment,
and update the weights based on the gradient vector, such that

w← w− η∇E(w)

where η is the learning rate as in gradient descent. The error function
(Equation ??) for a single example is −yiwxi, whose gradient with
respect to weights is simply −yixi. As a result, at every step of the
online algorithm, we subtract the value ηxiyi from the weight vector
for a training instance i that algorithm misclassifies. For the online
algorithm, the update rule is

w← w+ ηxiyi

where i refers to a single (random) training instance misclassified
by the model at this step. Intuitively, if, yi, the gold-standard la-
bel of the training instance i, is +1, we add the feature vector xi to
the weight vector (after scaling with the learning rate), making the
weight vector more similar to the misclassified positive example. If
the gold-standard label, yi is −1, then the update rule subtracts the
feature vector xi from the weight vector. The updated weight vector
becomes less similar to the misclassified negative example.

The intuitions above rely on the fact that the objects we want to
classify are represented by the feature vectors x in a way that the
representations in each class are more similar to each other in com-
parison to the representations of the object in the other class. Fur-
thermore, since we consider dot product as a measure of similarity,
the scales of variables matter. In general, perceptron and related
methods are sensitive to the scales of the feature vectors. Scaling (or
normalizing) weight vectors may be important for successful appli-
cation of the method.

Figure ?? presents a step-by-step demonstration of the perceptron
algorithm. The top left panel shows the training set. In panel 1,
the weight vector is initialized randomly. The discriminant line is

8 statistical nlp: course notes

−

−

−

+

+

+

+

(0)

−

−

−

+

+

+

+
w

(1)

−

−

−

+

+

+

+
w

(2)

−

−

−

+

+

+

+

w

(3)

−

−

−

+

+

+

+

w

(4)

−

−

−

+

+

+

+

w

(5)

Figure 1.3: A step-by-step demonstra-
tion of perceptron algorithm.

5 Since we simply add the vectors, the
learning rate in this demonstration is 1.

perpendicular to the wight vector, as the points where wx = 0 is sat-
isfied when x and w are perpendicular. Hence, any input vector per-
pendicular to the weight vector lies on the decision boundary. The
input vectors that lie on the same side as w are predicted as positive
class (shaded in light orange in the figure), and the input vectors on
the other side of the boundary (shaded in blue) are predicted as neg-
ative class. The initial configuration misclassifies three of the positive
training instances on the upper right quadrant, and one of the neg-
ative instances (lower left quadrant). In the next step (panel 2), we
pick one of the misclassified positive examples indicated by the red
vector, and add it to the weight vector.5 The resulting weight vector
is shown in panel 3, along with the misclassified training instance
picked for the next iteration. Since the misclassified instance picked
is a negative one, we subtract it from the weight matrix, showing the
results in panel 4, where we again pick another (positive) training
instance that is misclassified. After adding it to the weight vector,
the decision boundary shifts in a way that separates all the training
instances correctly, which concludes the search process.

The perceptron algorithm is guaranteed to converge if the training
instances are linearly separable. That is, the negative and positive in-
stances can be separated by a hyperplane (a line in two-dimensional
space in the example). If the training instances are not linearly sep-
arable, the algorithm does not terminate. In theory, this is a major
drawback, as we also do not know in advance whether the training
set is linearly separable or not. However, in practice, the algorithm
can be used with a stopping condition, such as a maximum number
of iterations allowed, and/or stopping after the classification accu-

classification 9

6 We will not cover SVMs in this course.
However, now that you know the per-
ceptron, you will understand SVMs
with less effort if you study it in other
sources.

7 Which is called a link function in the
GLM literature.

8 In contrast to perceptron where we la-
bels in the training data is 1 and −1,
and the sign of the output of the per-
ceptron determines the class label.

racy stops improving.
Another, somewhat subtle issue, with the perceptron algorithm

is that when it finds a solution, it will stop even if there may be a
better solution that leaves a larger margin between the positive and
negative classes. This issue is tackled by large margin classifiers, such
as support vector machines (SVMs).6

The perceptron is a binary classifier. To use it in multi-class clas-
sification problems, we need to use one of the strategies of combing
multiple binary classifiers for obtaining multi-class classifiers. We
will discuss the general multi-class strategies soon in this lecture.

1.1.1 A bit of history

The perceptron was developed in late 1950’s and early 1960’s by
rosenblatt1958. It caused excitement in many (then young) areas
including computer science, artificial intelligence, cognitive science.
The excitement (and funding) died away in early 1970’s after the
criticism by minsky1969 where main issue was the fact that the per-
ceptron algorithm cannot handle problems that are not linearly sep-
arable.

Another interesting note about the perceptron is its similarity with
other classifiers. Although it is technically more similar to the SVMs,
historically it is related to the artificial neural networks (ANNs).

1.2 Logistic regression

A logistic regression model estimates the conditional probability of
the outcome variable given the predictor(s), P(y | x). It is one of
the basic methods in statistics as used in experimental sciences, and
also closely related to the more complex models, including artificial
neural networks.

Despite ‘regression’ in the name, logistic regression is is a classifi-
cation method. The name is related to the fact that it is an instance of
generalized linear models (GLMs), which are generalizations over lin-
ear regression. In GLMs the outcome variable is transformed using
a non-linear function,7 and error distribution may be non-Gaussian.
Below, we will start from ordinary least-squares regression and de-
velop our GLM to a logistic regression through an example.

Since we want to predict the probability of the positive class, we
code positive class as 1 and negative class as 0. Hence, training labels
are either 0 or 1.During prediction the model predicts a probability
value in range [0, 1]. Typically, if the probability is larger than 0.5,
then we predict the positive class, otherwise the negative class. 8

Note that we expect the model to predict the probability of success
in a Bernoulli trial conditioned on the predictor(s). The model’s out-
come ŷ is simply the probability parameter of a Bernoulli distribu-
tion.

Figure ?? presents an example training set for logistic regression
with a single predictor, along with an ordinary least-squares model

10 statistical nlp: course notes

−2 0 2

0

0.5

1

x

y

Figure 1.4: An example training set for
logistic regression with a single predic-
tor. Positive data points are indicated
with red, and negative data points are
indicated with blue dots. The thick line
represents an ordinary least squares re-
gression fit to the data. The dashed line
represent the point in the x axis which
is used for discriminating the positive
and negative instances.

logistic(x) =
1

1+ e−x

−5 5

0.5

1

x

Figure 1.5: A plot of logistic function.

fit to the data. The dashed vertical line indicate the discrimination
point. In this example we have only a single predictor. As a result the
model will predict positive or negative classes for values of x below
or above a particular value. Since the regression slope is negative
in our example, the points on the left of the discriminant will be as-
signed to the positive class, and the points on the right are predicted
as negative.

The first problem with fitting a regression line to the data in Fig-
ure ?? is related to the fact that we want to predict probabilities.
However, the regression model’s predictions will be above 1, for ex-
ample, for x = −2 and below 0 for x = 2. To solve this problem, we
transform our outcome variable using the logit function. The logit
function is defined as

logit(p) = log
p

1− p

where p is the probability of the positive class, for our purposes.
The term inside the logarithm is called the ‘odds ratio’, which is

simply the probability that an event occurs divided by the probability
that it does not. The odds ratio ranges between 0 to ∞. Taking its
logarithm, we map our outcome variable to the range −∞ to ∞.
Now we can set our regression model as

log
p

1− p
= w0 +w1x

and during prediction invert the logit function to get the conditional
probability we are interested in. The inverse of the logit function
is the logistic function (hence the name of the method). Figure ??
plots the logistic function. The logistic function is a sigmoid-shaped
function that squashes the real numbers into the range between 0
and 1. For our (almost logistic) regression example, the probability
value returned from the model is, then, defined as

ŷ = p̂ =
1

1+ e−w0−w1x
=

ew0+w1x

1+ ew0+w1x
(1.2)

which is the model’s prediction of the probability of success.
We simply take the regression model’s prediction, and plug it into

the logistic function to obtain the estimated probability of the posi-
tive class given a value of x.

A second problem with using regression to estimate the logistic
regression problem is the distribution of the errors. The distribution
of residuals in Figure ?? are not normal. This means our estima-
tion is not the maximum-likelihood estimation. More importantly,
however, some errors are not useful for estimation, resulting in a
non-optimal model. For example, the model classifies the right-most
blue point (x = 2.0) in Figure ?? correctly and confidently. How-
ever, being away from the regression line, this data point will have
a rather large residual, causing model to be penalized for a correct
classification.

The solution to this problem is to realize that the model defines a
binary distribution over the training samples (error is also binomially

classification 11

9 To prevent overfitting, typically the
objective function minimized includes a
regularization term, e.g., L1 or L2 norm
of the weight vectors.

−2 0 2

0

0.5

1

x

y

Figure 1.6: The logistic regression fit-
ted to the data presented in Figure ??.
The resulting logistic curve is the blue

curve, which is ŷ =
1

1+ e0.33+2.40x .

0 1 2 3 4
0

2

4

x1

x2

Figure 1.7: An example data with two
predictors and the discriminant line es-
timated by logistic regression. The esti-
mated logistic regression equation is

y =
1

1+ e−0.1−2.53x1+2.58x2
.

As a result, the equation for the dis-
criminant line is defined by

−0.1− 2.53x1+ 2.58x2 = 0.

distributed). The model’s prediction of the probability of a particular
data point in the training data can be calculated using Equation ??.
Once we have the predicted probabilities for the training set, we can
write down the likelihood of the training set according to the model
as

L(w) =
∏
i

ŷ
yi
i (1− ŷi)

1−yi

where ŷi is the model’s prediction, and yi is the gold-standard label
for ith training instance. Remember that ŷi and yi are both probabil-
ity values. The equation simply uses the Bernoulli/binomial prob-
ability mass function we reviewed during our probability refresher.
The likelihood of the whole data set is the multiplication of individ-
ual likelihoods, since we assume the training instances are indepen-
dent of each other.

As in our earlier discussion of maximum likelihood estimation (of
regression), instead of maximizing the likelihood, we minimize the
‘minus log likelihood’.9

− logL(w) = −
∑
i

yi log ŷi + (1− yi) log(1− ŷi) (1.3)

Note the resemblance of this formula to the cross entropy we dis-
cussed during our discussion of information theory. In fact, by min-
imizing this function, we are minimizing the cross entropy of the
gold-standard distribution defined by the training set with respect
to the distribution of the model’s predictions.

The error function above is differentiable. If we replace occur-
rences of ŷi Equation ?? with its form defined in Equation ??, we can
find/evaluate the gradient of this function with respect to the model
parameters. However, there is no known analytic solution. The good
news, on the other hand is that it is a convex function. As a result,
we can use gradient descent to find the global minimum of the error.

Figure ?? shows the fitted logistic regression curve. Although
the discriminant (indicated by the dashed vertical line) is similar to
the one estimated by the ordinary regression (Figure ??), now the
model’s predictions are probability values in range (0, 1), and the
predicted probability is a non-linear function of the predictor(s). To
find the discriminant, we need to set the model expression to 0.5,
the equi-probability value for both outcomes. Solving this equation
is not very difficult. However, note that the predicted probability is
1
2 when ‘regression part of the model’ is 0, i.e., 2.40+ 0.33x = 0 in
our example. This is a linear equation. Even though the probability
assignments are made in a non-linear fashion, the discriminant func-
tion is linear. To show the linearity more clearly, Figure ?? plots a
similar example with two predictors.

1.2.1 Multi-class logistic regression

We discussed logistic regression for the binary case, but it has a natu-
ral extension to multi-class case, which has been rather popular in the

12 statistical nlp: course notes

10 What is the number of parameters in
terms of number of classes and number
of predictors?

11 This is why we have ‘Bayes’ in the
name.

NLP literature. Recall that logistic regression estimates a conditional
probability distribution, the probability distribution of the outcome
variable conditioned on the predictors. In the binary case, the distri-
bution estimated is a binomial distribution. For the multi-class case
we need to estimate a multinomial distribution, which leads us to
the formulation

P(Ck | x) =
ewkx∑
j e

wjx

where Ck is the kth class label. This function is called the softmax
function, and it is a generalization of the logistic sigmoid function
that ensures that total probability (over all class labels) sum to 1.
Similar to the binary case, we estimate the model parameters by min-
imizing the minus log likelihood assigned to the data by the model.10

Similar to the binary case, the loss function is differentiable and con-
vex, and the parameters can be estimated using a search procedure
like gradient descent.

The multinomial version of logistic regression is known as maxi-
mum entropy model (often shortened max-ent), or log-linear model. Fur-
thermore, both binary and multi-class versions are important build-
ing blocks of (deep) neural networks.

1.3 Naive Bayes classifier

Another simple classification method that enjoyed quite some suc-
cess and popularity, especially in spam detection, is the naive Bayes
classifier. Similar to the logistic regression, our aim is to estimate the
probability of the outcome variable given the predictor(s). Hence,
the model assigns probabilities to each possible class given the set of
predictors. During prediction, the class with the highest probability
is selected as the predicted class. More formally, we can write this as

ŷ = arg max
y

P(y | x)

which means we choose the y value that maximizes the P(y | x)

among all possible values of y.
Similar to logistic regression, we need to estimate the conditional

probability distribution P(y | x). Unlike logistic regression, however,
the naive Bayes classifier does not estimate this probability distribu-
tion directly. Instead we use the Bayes’ formula to rewrite it as11

ŵ = arg max
w

P(y | x)

= arg max
w

P(x | y)P(y)

P(x)

= arg max
w

P(x | y)P(y) .

Note that simplification on the third step is possible since P(x), the
(marginal) probability of the data is the same for all model instances
(defined by the values of w). The model parameters to be estimated,

classification 13

12 Even though predictors would be cat-
egorical in the typical use of naive
Bayes, some of the predictors may even
be continuous, making it impossible
to rely on counting and dividing ap-
proach.

13 This is the reason for the ‘naive’ part
of the name.

medication

free

technology

advanced

book

now

lose

weight

good

Figure 1.8: The list of features for the
naive Bayes example.

good book (NS)
now book free (S)
medication lose weight (S)
technology advanced book (NS)
now advanced technology (S)

Figure 1.9: Example training data for
spam detection. Each line represents an
email, followed by its label, spam (S) or
not spam (NS) in parentheses.

Table 1.1: Conditional probabilities of
words given the class labels for the ex-
ample data in Figure ??.

w P(w |S) P(w |NS)

medication 1/3 0
free 1/3 0
technology 1/3 1/2
advanced 1/3 1/2
book 1/3 2/2
now 2/3 0
lose 1/3 0
weight 1/3 0
good 0 1/2

w, are the parameters of two probability distributions: the distribu-
tion of the output classes P(y), and the conditional distribution of
input features given the class, P(x | y). Estimating P(y) is easy in
most cases, all we need to do is count the number of times the each
class occurs in the training data, and divide it to total number of
training instances. The second term, P(x | y), is harder to estimate
as we typically have a large number of predictors (x), and we can-
not expect to estimate the joint probability of all of the predictors by
counting the number of occurrences of all combinations of feature
values. For any realistic problem, many of the combinations will not
be observed, even in very large data sets.12 The solution to this prob-
lem is making a conditional independence assumption. We assume that
given the class labels, the predictors are independent of each other.
As a result, their joint probability is multiplication of probabilities of
individual predictors given the class. The conditional assumption is
wrong.13 Words in a document are clearly not independent of each
other. However, in practice this works reasonably well for a large
number of problems.

To make the above discussion more concrete, we will go through
a toy example. We assume that we are building a spam detection
application. With classes of spam (S) and not spam (NS), we have
a binary classification problem at hand. And, our predictors are the
set of words presented in Figure ??. We take the occurrence as a
binary variable, a word occurs in a document or not, and train a
spam detector on the training set given in Figure ??.

To estimate the prior probabilities of the classes, we count how
many times each class occurs in the training set, and divide it into
the total number of training examples: P(S) = 3/5 and P(NS) = 2/5.
For computing the likelihood, we need to calculate probability of
observing a particular word in training instances belonging to each
class (spam and non spam documents). We can conveniently repre-
sent this in a table as in Table ??.

Although there are some variations, training naive Bayes generally
amounts to counting. Once we have estimated the relevant probabili-
ties (parameters), we can find the probability of an email being spam
by multiplying P(S) with P(w |S) for each word in the document. For
example, for a test document that contains words book technology, we
calculate both as follows.

P(S)P(book | S)P(technology | S) =
3

5
× 1
3
× 1
3

P(NS)P(book |NS)P(technology |NS) =
2

5
× 2
2
× 1
2

Note that these are not probabilities. We need to divide both quanti-
ties to probability of observing this email, but since both expressions
are about the same email, its probability is the same for both classes.
As a result we can pick the largest value, in this case indicating that
the email is not spam.

An interesting detail is what happens if the test document con-

14 statistical nlp: course notes

14 Although probability theory is not
used for making predictions, some of
the methods in this category make use
of probability theory in the estimation,
e.g., for minimizing the expected error
on the test set.

tains, for example, good. According to Table ??, P(good | S) = 0. This
means any document that includes word good cannot be spam. To
solve this problem, we use a smoothed estimate of the conditional
probabilities where a part of the probability mass is reserved for un-
seen events. We will discuss the smoothing later in this course along
with n-gram language models.

Naive Bayes is a simple algorithm, and admittedly, it does not gen-
erally perform better than other (more recent) classification mecha-
nisms. However, understanding naive Bayes may help understand
other, more complex, methods in the literature.

1.4 A classification of classification models

The three classification methods we reviewed represent three differ-
ent types of models in a broad categorization of machine learning
models. In case of perceptron, and similar models such as SVMs,
the aim is to separate the classes from each other without making
use of the probability theory.14 These type of models are often called
discriminative models in the literature. The aim of these models are
to find a boundary that discriminate the data points belonging to
different classes. The other two models we discussed are probabilis-
tic. However, logistic regression predicts the conditional probability of
class labels given the predictors, while the naive Bayes (under the
hood) predicts the joint probability of the outcome and the predictors.
Among these models, logistic regression is again a discriminative
model. Although it assigns probabilities to each class for each data
point, it forms a (soft) boundary for discriminating between classes.
Naive Bayes, and similar models, are generative. They can assign
probabilities to the data points, and since they model the complete
data, one can generate data based on the model by sampling from
the joint distribution.

In general, discriminative/conditional models tend to perform
better in classification tasks mainly because they do model the prob-
lem directly, without putting additional attention to modeling the
data. However, there are also cases where generative models are pre-
ferred. We will see some applications where the difference between
generative and discriminative models is important.

1.5 Multi-class classification

Most of our discussion above focused on binary classification. Some
classification methods, such as logistic regression and naive Bayes
discussed above, has a natural way to handle multi-class classifica-
tion problems. Some models, on the other hand, are designed to
work with the binary case. There are two well-known strategies that
turn any binary classifier to multi-class classifier. The main idea is
training multiple binary classifiers, and making the final class assign-
ment based on the predictions from all of the classifiers.

The first strategy we discuss is called one vs. all, or one vs. rest. To

classification 15

x1

x2

+

+

+

+

−

−

−

×
×

×

×

Figure 1.10: A demonstration of one-vs-
rest multi-class strategy.

x1

x2

+

+

+

+

−

−

−

×
×

×

×

Figure 1.11: One-vs-rest classification
with ambiguities resolved based on the
distance from the decision boundary.

turn a binary classifier into a multi-class classifier that predicts one
of k classes, we train k classifiers. Each time, we pick one of the
classes as the positive class, and label the rest as the negative class.
Figure ?? demonstrates the one-vs-rest strategy. The lines in the fig-
ure are the discriminants of individual classifiers, that are trained to
discriminate one of the classes from the others.

Note, however, that some regions of the input space will not be
claimed by any of the classes, such as the shaded area in the mid-
dle. Furthermore, some regions will be claimed by more than one
class. In these cases, if the base classifier returns a probability or
confidence value, we pick the class with the highest score (or low-
est negative score). Figure ?? presents the new multi-class decision
boundaries based on the distances from the decision boundaries of
the base classifiers.

The second strategy for forming multi-class classifiers from bi-
nary base classifiers is called one vs. one. One-vs-one strategy trains
k(k− 1)

2
classifiers where each classifier learns to separate only two

of the classes from each other. The final prediction is typically made
by majority voting. The class that is predicted most among all pre-
dictions is chosen as the predicted class. Ties, if they occur, may be
broken based on either confidence values, or randomly. The one-
vs-one strategy may be applied even when the base classifiers do
not have any confidence or probability associated with their predic-
tions. However, it also requires more computing power because of
the number of classifiers it needs to train.

1.6 Evaluation metrics for classification

For regression, we use root mean squared error (RMSE) or the related
measure R2 to measure how badly or how well the model performs
on a given data set with gold-standard outcome values. The RMSE
is simply the square root of the average error we minimize while
fitting the model. In case of classification, we care about the categor-
ical match between the model’s prediction and the actual values. The
error function used by a particular classification algorithm is not nec-
essarily a good measure of success. Interpreting the values of error
functions used for classification are not generally easy to interpret.

A straightforward way to measure the success of a classifier is its
accuracy. Accuracy is simply the number of correctly predicted labels
divided by the total number of predictions.

Although accuracy is straightforward to calculate and interpret,
it has a major flaw in some cases. We illustrate this through an ex-
ample. Let us assume that we are evaluating a search engine that
labels documents in a large document collection as ‘relevant’ or ‘not
relevant’ to a given query. Formulated like this, the search engine
is a binary classifier. For most queries, there is only a small num-
ber of documents that are relevant. We assume that for a particular
query, there are 1 000 relevant documents in a collection of one mil-

16 statistical nlp: course notes

Table 1.2: A comparison of predictions
of a binary classifier with gold-standard
(true) labels.

true label

positive negative

positive TP FP

negative FN TN

pr
ed

ic
te

d

15 Where, as evident from our example
above, class imbalance is common.
16 False positives and false negatives are
called Type I and Type II errors respec-
tively in the statistics literature.

0 0.5 1
0

0.5

1

recall

pr
ec

is
io

n

Figure 1.12: Precision-recall curve for
a logistic regression classifier. Each
data point corresponds to the classifier
with the same parameters, but a dif-
ferent probability threshold (instead of
0.5 over which the model decides for
the positive class. The graph does not
show the threshold values. However, as
expected, higher threshold values lead
to high precision, low recall, and lower
threshold values lead to low precision
high recall. These graphs are also use-
ful for comparing alternative models
based on the area under curve (AUC).
Other factors being equal, the models
with larger AUC is preferable.

lion documents. Now, we will test a ‘dummy’ search engine which
labels everything as ‘not relevant’. If we calculate its accuracy in this
setting,

accuracy =
999 000

1 000 000
= 0.999.

Clearly, we do not want to credit this useless classifier with a success
rate of 99.90%. In general, accuracy is not a good measure if the
class distribution is imbalanced, that is, if some of the classes are more
frequent than the others.

To (partly) avoid this shortcoming of accuracy, we use two mea-
sures that originate from information retrieval.15 The measures are
called precision and recall. Before defining and discussing the mea-
sures, we need to define a few more concepts about the errors of a
binary classifier makes. Table ?? shows possible outcomes of a binary
classifier compared to the true (gold-standard) labels. True positives
(TP) are the positive instances the model predicts correctly, false posi-
tives (FP) are the instances the model mistakenly predicts as positive,
false negatives (FN) are the instances the model mistakenly classifies
as the negative class, and finally, true negatives (TN) are the instances
the model correctly predicts as the negative class.16 Based on these
counts, precision and recall are defined as

precision =
TP

TP+ FP
recall =

TP

TP+ FN
.

In words, precision is the ratio of the number of correct positive
predictions to the number of instances predicted as positive by the
classifier. Recall is the ratio of the number of correctly predicted
positive instances to the number of all positive instances in the gold-
standard data. If we return to the ‘dummy’ search engine example,
since the number of true positives is zero, its precision and recall are
both 0.

Typically, high precision comes with the cost of low recall, and
high recall leads to low precision. Figure ?? presents the change in
precision and recall of a logistic regression classifier, where the prob-
ability threshold for deciding for the positive class is varied. That
is, each data point corresponds to a probability threshold. In some
problems, we may want to trade one for the other. For example, for
spam detection, probably a high-precision classifier is more impor-
tant, since classifying a legitimate email as spam is worse than a few
spam messages appearing in the inbox time to time. In tasks where
the result is further refined (manually), one may prefer high recall
not to miss many of the positive instances in the data.

Although having both measures tell more about the performance
of the classifier, sometimes we want a single number summary. The
standard single-measure summary in this case is called F1 score (or
F-measure, or F-score) defined as

F1 score =
2× precision× recall

precision + recall

classification 17

17 These measures do not care how
the model performs on non-positive
class(es). Note that true negatives (TN)
is not even used in any of the defini-
tions.

Table 1.3: An example confusion ma-
trix.

true class

neg. neu. pos.

negative 10 3 4

neutral 2 12 8

positive 0 7 7

pr
ed

ic
te

d

F1 score is the harmonic mean of precision and recall. It is similar
to the arithmetic mean if precision and recall are similar, but the
harmonic mean is lower than the arithmetic mean if the difference
between the precision and recall is high. A more general measure,
Fβ score, is defined as

Fβ =
(1+β2)× precision× recall
(β2 × precision) + recall

.

In this formulation, β values lower than 1 weighs precision higher
than recall, and β values higher than 1 weighs recall higher than
precision. Sometimes F0.5 and F2 scores are reported in the literature
when there is a reason to prefer precision or recall. However, the
uses of β other than 1 is rather rare, and if the subscript is dropped,
F-score, refers to F1 score.

Precision, recall and F-score as defined above works only for bi-
nary classification problems where there is a natural positive class.17

For multi-class classification problems, or binary classification prob-
lems with no natural positive class, averaged versions of precision
recall and F-score can be used for assessing the overall performance
of a classifier. There are two common methods of obtaining average
performance scores. In macro averaging, we calculate the score for
each class separately, and divide the result to the number of classes.
In micro averaging, we average over all data points regardless of their
class labels. More formally,

precisionM =

∑C
i

TPi
TPi+FPi

C
recallM =

∑C
i

TPi
TPi+FNi

C

precisionµ =

∑C
i TPi∑C

i TPi + FPi
recallµ =

∑C
i TPi∑C

i TPi + FNi

where C is the number of classes, the subscript i ranges over classes,
e.g., TPi is the true positives for class i, and M indicate macro, and
µ indicate micro averaged scores.

Macro averaging favors models that perform equally well on all
classes, regardless of number of instances in each class. Micro aver-
aging yields higher scores if the model performs well on the classes
with a large number of instances. In fact, the micro averaged F-score
is equal to the accuracy.

Although single-number performance indicators are useful for eval-
uating a classifier’s performance in general, there are a number of
other well-known ways to get further insights about model’s behav-
ior. A very useful diagnostic for a model’s behavior is the confusion
matrix. The confusion matrix is a square matrix whose rows and
columns correspond to predicted and true class labels. The cells of
the matrix count the corresponding predicted and true labels.

Table ?? show an example (hypothetical) confusion matrix for a
three-class sentiment classification. We can see from the confusion
matrix that the model does well in predicting the negative class, pre-
dicting only 2 of the true negatives as neutral, but having quite a

18 statistical nlp: course notes

x1

x2

+

+

+

+

+
+

−
−

−

−

−

−

−

a1

a2

x2 < a2

− x1 < a1

+ −
ye

s no

noye
s

Figure 1.13: A decision tree (bottom)
and the decision boundary it defines
(top).

x1

x2

+

+

+

+

+
+

−
−

−

−

−

−

−
?

Figure 1.14: A demonstration of the
memory-based learning.

−

−

−

+

+

+

+

Figure 1.15: A demonstration of sup-
port vector machines.

few ‘false positives’ with respect to the negative class, predicting 3 of
the neutral and 4 of the positive instances as negative. On the other
hand, it is not very good at predicting the positive class, confusing it
more often with neutral than predicting correctly. In general inspect-
ing the confusion matrix may tell more about the model, and may
also point to potential ways to improve the classification models.

We will return to issues of evaluation again. For now we close
this part with repeating the most important rule of evaluation: since
we want our models to be useful outside the training data, the real
indicator of a machine learning method’s performance is the scores
obtained on a separate validation/test set that does not overlap with
the training set.

1.7 What we did not cover

There are many interesting classification methods used in practical
ML/NLP applications. Although it is not possible to cover all of
them here, a few of them deserve at least a short mention.

Decision trees are interesting especially in cases where it is impor-
tant to interpret the model’s decisions. An example decision tree is
depicted in Figure ??. Decision trees are non-linear classifiers that
are typically used with categorical features (but the example in the
figure uses continuous features), and rely on information theoretic
measures for learning. A related method random forests, which are
a collection of decision trees trained on subsets of the training in-
stances and/or features, generally perform better.

Another classification method we did not cover is memory based
learning, also called instance based learning or lazy learning. The idea in
memory based learning is to store all the training instances without
processing. Classification decisions are made based on the nearest
neighbors of the new instance with unknown label during prediction
time. Figure ?? demonstrates the memory based learning. In the
example given in the figure, the we use three nearest neighbors to
predict the class of a test instance indicated with question mark. In
this case, the negative class wins assuming we are using a simple
majority voting decision.

Yet another interesting interesting method we already mentioned
a few times is the support vector machines (SVMs). SVMs are quite sim-
ilar to the perceptron. However, they pick the linear discriminant that
maximizes the margin between the classes. Figure ?? demonstrates
the SVM solution for the same problem demonstrated in Figure ??.
Unlike the perceptron algorithm, the linear discriminant found by
SVM is equally distant to the nearest members of each class, which
are called support vectors. The SVMs also provide well-studied so-
lutions to the non-separable and non-linear classification problems.
The SVM also comes with a built-in regularization scheme that is
motivated by minimizing the expected test error. SVMs are theoret-
ically sound, successful linear classifiers that still produce the best
results in quite a few classification tasks.

classification 19

18 The random forest classifier we
briefly mentioned above is simply an
ensemble of decision trees.

Besides the various other interesting classification methods, we
have not discussed how to handle non-linearity either. For most lin-
ear classifiers, the answer is similar to the non-linear regression. Use
of non-linear basis functions help linear classifiers learn non-linear
solutions too. We will discuss non-linearity alongside artificial neu-
ral networks in a separate lecture.

Our discussion of the classification methods have been limited to
binary or multi-class classification where label are mutually exclu-
sive. In some classification problems, the objects we want to classify
may belong to more than one class. For example, in topic classifica-
tion, an article can be both on ‘politics’ and ‘economy’. This type of
classification problems are called multi-label classification. Similarly,
the predictions we want to make in some problems fall into a natural
hierarchy. Such classification problems, hierarchical classification, is yet
another interesting variation of the problem that was not discussed
in this lecture.

A related set of classification problems are those where one has to
predict not simple labels independently, but objects with a structure.
Examples of such objects include trees (e.g., output of a syntactic
parser) or sequences of labels (e.g., in case of part-of-speech tag-
ging). We will return to these two cases because they are prevalent
in natural language processing.

Finally, another related topic beyond the scope of this introduc-
tion is the classifier ensembles. It is known that combining predictions
of different classifiers, under certain conditions perform better than
a single classifier.18 The general idea with ensembles is to combine
prediction of a large number of diverse classifiers. The diversity can
be achieved by different ways, for example by using different meth-
ods or alternations in the training procedure.

Summary

This lecture covers some of the main concepts in classification. We
introduced three three simple (but important) classification meth-
ods, presented common general ways of extending a binary classifier
to multi-class problems, defined and discussed common evaluation
methods for classification, and provided a few related topics that we
did not cover.

Classification is a highly applied and well-studied topic. Besides
for our usual textbook references (hastie2009; mackay2003; bishop2006),
there is an immense amount of information (online or offline) on clas-
sification. It is difficult to suggest a good text that works for every
purpose. The interested readers are recommended to find a source
that works best for them, possibly starting with the references above.

We will cover classification using artificial neural networks in a
separate lecture, and also cover sequence classification, both with
traditional methods and neural networks, later in this course.

