1 Mathematical preliminaries

Being an interdisciplinary field, it is often difficult to assume that all students of computational linguistics possess a (fresh) knowledge of some of the mathematical topics and notation. This chapter provides a highly coarse overview of some topics in linear algebra and calculus. The aim of this chapter is to provide a refresher or an listing of concepts from basic math that is required in this course. The discussion here is necessarily incomplete and informal. The interested reader should follow the references provided for in-depth treatments of these subjects.

Section ?? introduces some topics from linear algebra. We will mainly introduce vectors, matrices and operations on vectors and matrices. These topics and notation will be important particularly in understanding the machine learning methods covered in the class.

Section ??, briefly revisits derivatives and integrals. Derivatives are used for finding maxima or minima of functions, which is the basis for many of the machine learning methods. The integrals will also come back in our discussion of some of the machine learning methods, and in discussion of probabilistic learning and inference.

1.1 Linear algebra

In many NLP methods, we make heavy use of vectors and matrices, which are objects studied in linear algebra. Vectors are used for representing objects of interest, like words, documents or languages. Typically, each element of a vector corresponds to some aspect, or feature, of the object to be represented. As a very simplified example, consider the word counts presented in Table ??, where, each row and each column are vectors, and the whole table is a matrix.

In the example, we can consider the sequence of numbers on each row as a representation of the document it corresponds to. Similarly, each column can be considered as a representation of the corresponding word. A large number of methods in NLP rely on such representations, and finding useful representations for linguistic objects has been an important activity in computational linguistics. The representation in Table ?? is rather simple, and has many problems (for example, it is very sensitive to document size). With (more) useful representations for linguistics objects, relations, such as similarities, between the vectors indicate similarities of the objects they represent. For example, words with the similar or same meaning would have

Table 1.1: Counts of frequent words in three documents.

	the	and	of	to	in	\ldots
D_{1}	121	106	91	83	43	\ldots
D_{1}	142	136	86	91	69	\ldots
D_{3}	107	94	41	47	33	\ldots

similar representations. The other concepts or operations we revisit in this lecture also represent to real-world manipulations or changes on these objects. We will discuss more useful representations for linguistic objects, mainly words and sentences, in later chapters.

In this section we will review some of the properties of vectors and matrices, and the operations defined on them. If you had a linear algebra course, of if you know, for example, matrix multiplication, or dot product of vectors, you can safely skip this section.

1.1.1 Vectors

A vector is a mathematical object with a magnitude and a direction. Graphically, we can represent or visualize a (two-dimensional) vector as in Figure ??. The 'picture' is useful for getting a better intuition about the objects and operations under study. However, we can only visualize vectors in two and (with some effort) three dimensions. Nevertheless, most of these intuitions generalize neatly to higher dimensional spaces. ${ }^{1}$

More commonly, we represent vectors by an ordered list of number, such as $(1,0,1)$. A vector defined with n real numbers is said to be in the vector space \mathbb{R}^{n}. We often write a vector of n real numbers (vectors in \mathbb{R}^{n}) as $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Note that the \boldsymbol{v} that stands for the vector is typeset in boldface font. It can alternatively be marked with an arrow over it, like \vec{v}. Other notations for vectors of n numbers include

$$
\boldsymbol{v}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle \quad v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \quad \boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]
$$

Geometrically, we represent vectors as arrows as in Figure ??. The individual numbers on the notation represent the projection of the tip of the vector to the respective axis. In the example on the right, for example, the green and blue vectors have the same magnitude, but their directions are opposite of each other. If we take the projections of the vector to the x and y axes, they correspond to first and the second number in our notation respectively.

Many operations defined on (real) numbers have analogous forms for vectors, and they are frequently used in machine learning and natural language processing, as well as many other branches of science and engineering.

Vector norms are a generalization of the magnitude of a vector. A norm assigns a non-negative length or size to a vector. Norms are related to distance metrics which by themselves are useful in comparing objects represented as vectors. ${ }^{2}$ The most familiar norm is the Euclidean norm, which is also known as L2 (or L_{2}) norm. L2 norm of a vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ is

Figure 1.1: A graphical representation of a vector.
${ }^{1}$ Not without exceptions, however. Unexpected or unintuitive behavior of mathematical objects and operations in higher dimensional spaces are often noted under the term curse of dimensionality.

Figure 1.2: Example vectors in 2dimensional Euclidean space.
${ }^{2}$ The norm of a vector is the distance from its tail to its tip, or the distance between two objects is the norm of the difference between their vector representations.

$$
\|\boldsymbol{v}\|_{2}=\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}
$$

The subscript 2 in $\|v\|_{2}$ indicates that the norm is L2 norm. The L2 norm is often taken to be the default. If the subscript is omitted then we mean the L2 norm. Another interesting norm for our purposes is the Li norm, which is related to the so-called taxi-cab, city-block or Manhattan distance. It is defined as

$$
\|\boldsymbol{v}\|_{1}=\left|v_{1}\right|+\ldots+\left|v_{n}\right| .
$$

Figure ?? visualizes the L1 and L2 norms in two-dimensional Euclidean space. For the example vector in Figure ??, we have

$$
\begin{aligned}
& \|(3,3)\|_{2}=\sqrt{3^{2}+3^{2}}=\sqrt{18} \approx 4.24 \\
& \|(3,3)\|_{1}=|3|+|3|=6
\end{aligned}
$$

Like any other vector operation or property, vector norms can be generalized to vectors of any dimension.

The concept of vector norm can also be generalized to any positive integer p the L_{p} norm for an n-dimensional vector is defined as

$$
\|\boldsymbol{v}\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

In this course, we will only work with L1 and L2 norms defined above. You may occasionally see L_{0} or L_{∞} norms used in some related literature. ${ }^{3}$

SCALAR MULTIPLication is the operation of multiplying a vector with a scalar (for our purposes a scalar is a real number). Given a vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$, its multiplication with scalar a is defined as

$$
a \boldsymbol{v}=\left(a v_{1}, \ldots, a v_{2}\right)
$$

Multiplying a vector with a positive scalar changes its magnitude ('scales' it) but does not change its direction. Multiplying a vector with a negative scalar reverses the direction of the original vector.

Vector addition and subtraction are defined on two vectors with the same number of dimensions. For n-dimensional vectors $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\boldsymbol{w}=\left(w_{1}, \ldots, v_{n}\right)$,

$$
\boldsymbol{v}+\boldsymbol{w}=\left(v_{1}+w_{1}, \ldots, v_{n}+w_{n}\right)
$$

The subtraction is simply addition where the second vector is multiplied by -1 .

$$
\boldsymbol{v}-\boldsymbol{w}=\boldsymbol{v}+(-\boldsymbol{w})=\left(v_{1}-w_{1}, \ldots, v_{n}-w_{n}\right)
$$

Figure 1.3: Visualizations of L2(solid blue) and example Li (dotted green, orange and red) norms vector $(3,3)$.
${ }^{3}$ With some simplification, L_{0} norm of vector is the number of non-zero entries of the vector, and L_{∞} norm is the largest absolute value among the entries of the vector.

Figure 1.4: Scalar multiplication.

Figure 1.5: Vector addition and subtraction.

Dot Product is a very important quantity that will come up regularly in this course. Dot product of two vectors, $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\boldsymbol{w}=\left(w_{1}, \ldots, v_{w}\right)$, is a scalar defined as:

$$
\boldsymbol{v} \cdot \boldsymbol{w}=v_{1} \times w_{1}+\ldots+v_{n} \times w_{n}
$$

It should be emphasized that dot product yields a scalar (real number), not a vector. There are other vector product operations: outer product that we will discuss below, and cross product defined for vectors in \mathbb{R}^{3}.

There is an alternative way to define the dot product, which also leads to a nice geometric interpretation. We can calculate the dot product as

$$
\begin{equation*}
\boldsymbol{v} \cdot \boldsymbol{w}=\|\boldsymbol{v}\|\|\boldsymbol{w}\| \cos \alpha \tag{1.1}
\end{equation*}
$$

where α is the angle between the two vectors (see Figure ??). This also allows us to interpret the dot product geometrically. The dot product of two vectors is proportional to each vector's magnitude, and also to the cosine of the angle between them. Since the cosine of the angle will be larger for smaller angles, the dot product will be larger for vectors that point to similar directions (keeping the magnitudes constant). The dot product of two orthogonal vectors (vectors with a 90° angle between them) is 0 . If the angle is larger than 90°, the dot product is negative. Remember that like the other operations we discuss here, the dot product and its interpretations generalizes to higher dimensional vectors.

Cosine similarity is a similarity measure related to dot product, which we will often use for measuring similarities between objects of interest, e.g., documents. We can rewrite Equation ??, above to calculate the cosine of the angle between two vectors as,

$$
\cos \alpha=\frac{\boldsymbol{v} \boldsymbol{w}}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

The range of the cosine similarity is between -1 and 1 . The cosine similarity for vectors that point to the same direction is 1 (regardless of their magnitude) and the vectors that point exact opposite directions have a cosine similarity of -1 . Note that by dividing the vectors to their Euclidean (L2) norms, we are scaling them to unit vectors while keeping their directions the same. As a result, cosine similarity ignores the magnitudes of the vectors. This is generally more appropriate when the ratios between the entries of a vector matters more than the magnitude of the vector. For example, if we represent documents with vectors of word counts (we will return to this representation later), the cosine similarity would be less sensitive to document length in comparison to the dot product.

Figure 1.6: Dot product of two vectors.

1.1.2 Matrices

Matrices are the second type of mathematical objects we often use in various NLP methods. A matrix is simply a two-dimensional array of numbers, which is noted as a rectangular placement of scalars. A matrix of n rows and m columns is an $n \times m$ matrix. A real-valued $n \times m$ matrix is said to be in $\mathbb{R}^{n \times m}$. We can think about a matrix as a collection of column or row vectors. We denote matrices with boldface capital letters, like \boldsymbol{A}. While referring to a matrix' elements, we subscript the element first with its row and then its column.

$$
A=\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, m} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, m}
\end{array}\right]
$$

We will briefly revisit some of the operations on matrices in this section.

Transpose of a matrix simply replaces its rows by columns. Transpose of a matrix \boldsymbol{A} is denoted with \boldsymbol{A}^{\top}.

$$
\text { If } \boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right], \boldsymbol{A}^{\top}=\left[\begin{array}{lll}
a & c & e \\
b & d & f
\end{array}\right]
$$

Multiplication by a scalar is also defined for matrices. To multiply a matrix with a scalar, each element of the matrix is multiplied by the scalar. For example,

$$
2\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 \times 2 & 2 \times 1 \\
2 \times 1 & 2 \times 4
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 8
\end{array}\right]
$$

Matrix addition and subtraction require two matrices of same dimensions. To obtain sum (or difference) of two matrices, each element of the second matrix is added to (or subtracted from) the corresponding element of the first matrix. For example:

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2+0 & 1+1 \\
1+1 & 4+0
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right]
$$

Matrix multiplication is a slightly complicated operation. The matrix multiplication $\boldsymbol{A} \times \mathbf{B}$ is defined only if \boldsymbol{A} has the same number of columns as the number of rows in B. Multiplying a $n \times k$ matrix with a $\mathrm{k} \times \mathrm{m}$ matrix results in a $\mathrm{n} \times \mathrm{m}$ matrix. Note that both $\boldsymbol{A} \times \mathbf{B}$ and $\mathbf{B} \times \boldsymbol{A}$ is defined only for square matrices (of same dimensions).

If $\mathbf{A} \times \mathbf{B}=\mathbf{C}$, the element of the resulting matrix \mathbf{C} on row i and column $\mathfrak{j}, c_{i, j}$, is calculated as:

$$
c_{i j}=\sum_{\ell=0}^{k} a_{i \ell} b_{\ell j}
$$

Figure ?? demonstrates the matrix multiplication.

$$
\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right] \quad\left[\begin{array}{c|c|cc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right] \quad\left[\begin{array}{ccccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right]} \\
\left.\quad \begin{array}{c}
c_{12}=a_{11} b_{12}+a_{12} b_{22}+\ldots
\end{array}\right] \quad\left[\begin{array}{c}
a_{1 k} b_{k 2}
\end{array}\right]
\end{array}\right.
$$

Note that the element $c_{i j}$ is the dot product of $\mathfrak{i}^{\text {th }}$ row vector of \boldsymbol{A} and $\mathfrak{j}^{\text {th }}$ column vector of \mathbf{B}.

This also means we can view dot-product as matrix multiplication of a row vector (on the left) and column vector (on the right). Dot product of two vectors \boldsymbol{v} and \boldsymbol{w} is often noted as $\boldsymbol{v}^{\top} \boldsymbol{w}$ (it is a common convention to assume that vectors are column vectors unless stated otherwise). Technically, result of a matrix multiplication of a $1 \times k$ vector with a $k \times 1$ vector is a 1×1 matrix, not a scalar. However, this notation is prevalent in machine learning and NLP literature, and, in general, it is common not to distinguish scalars from vectors and matrices with a single entry.

For example, $\boldsymbol{v}=(2,2)$ and $\boldsymbol{w}=(2,-2)$,

$$
v^{\top} w=\left[\begin{array}{ll}
2 & 2
\end{array}\right] \times\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=2 \times 2+2 \times-2=4-4=0
$$

Outer product of two vectors with the same dimensionality, can also be defined as matrix multiplication. This time we put the column vector to the left and the row vector to the right. So, in the notation used above, outer product of two matrices \boldsymbol{v} and \boldsymbol{w} is $\boldsymbol{v} \boldsymbol{w}^{\top}$. Note that result of outer product of two k-dimensional vectors is a $k \times k$ matrix, not a scalar. The following is an example of outer product of two 3-dimensional vectors.

$$
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \times\left[\begin{array}{l}
6 \\
5 \\
4
\end{array}\right]=\left[\begin{array}{ccc}
6 & 5 & 4 \\
12 & 10 & 8 \\
18 & 15 & 12
\end{array}\right]
$$

Note that outer product does not require vectors to have the same dimensionality.

An identity matrix is a square matrix in which all the elements of the main diagonal are ones, and all other elements are zeros. The $\mathrm{n} \times \mathrm{n}$ identity matrix is denoted by \mathbf{I}_{n}. When there is no ambiguity, we omit the subscript, and simply write I. Multiplying a matrix with a compatible identity matrix does not change the original matrix. For $n \times m$ matrix \boldsymbol{A},

$$
\mathbf{I}_{\mathrm{n}} \mathbf{A}=\mathbf{A} \mathbf{I}_{\mathfrak{m}}=\boldsymbol{A}
$$

$$
\mathbf{I}_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Figure 1.8: The 4×4 identity matrix.

Figure 1.7: Matrix multiplication. The calculation of the resulting matrix c_{12} is highlighted.

Multiplying a vector with a matrix (linearly) transforms it to another (possibly a different dimensional) vector. These linear transformations have many applications, and they will also be useful for understanding some of the machine learning concepts. Here we revisit a few interesting transformations in 2-dimensional space:

- Identity transformation has no effect on the vector to be transformed

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

- Stretch along x-axis

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

- Multiplying a vector with

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

rotates it with θ degrees. For example, for 90-degrees rotation,

$$
\left[\begin{array}{cc}
\cos 90 & -\sin 90 \\
\sin 90 & \cos 90
\end{array}\right] \times\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \times\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

These linear operations can be combined (composed) for more complex transformations

Solving a set of linear linear equations has been one of the main applications of linear algebra. We will not discuss how to solve a linear equations here (since we rarely do this by hand), but we will demonstrate how a set of linear equations are represented using matrices and vectors. We will encounter this in various forms during the course.

The set of equations,

$$
\begin{aligned}
2 x_{1}+x_{2} & =6 \\
x_{1}+4 x_{2} & =17
\end{aligned}
$$

can be written as:

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \tag{1.2}\\
1 & 4
\end{array}\right]}_{\boldsymbol{w}} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
6 \\
17
\end{array}\right]}_{\mathbf{b}}
$$

which allows finding a solution (if one exists) using a method called Gaussian elimination.

For our purposes, the important point is to realize that this amounts to the matrix/vector operations operations we have been reviewing so far.

Figure 1.9: Stretch (three times) along x.

Figure 1.10: Rotate 90 degrees.

Inverse of a matrix is defined for square matrices. Inverse of matrix \mathbf{W} is denoted by \mathbf{W}^{-1}. Multiplying a matrix with its inverse yields the identity matrix.

$$
\mathbf{W} \mathbf{W}^{-1}=\mathbf{W}^{-1} \mathbf{W}=\mathbf{I}
$$

Now that we have defined the inverse of a matrix, we can solve a set of linear equations represented with matrices and vectors as in Equation ?? easily:

$$
\begin{aligned}
\mathrm{W} x & =\mathbf{b} \\
\mathrm{W}^{-1} \mathrm{~W} x & =\mathrm{W}^{-1} \mathbf{b} \\
\mathrm{I} x & =\mathrm{W}^{-1} \mathbf{b} \\
x & =\mathrm{W}^{-1} \mathbf{b}
\end{aligned}
$$

Calculating inverse of a matrix involves using a set of operations, called elementary row operations, on the augmented matrix that contains the original matrix and the identity matrix side by side. We will not cover this here, as we rarely do this by hand. Interested readers should check any of the linear algebra sources listed at the end of the chapter.

The determinant of a matrix is a scalar value with some interesting properties and applications, including

- A matrix is invertible if it has a non-zero determinant
- A system of linear equations has a unique solution if the coefficient matrix has a non-zero determinant

We denote the determinant of a matrix with vertical bars around it, determinant of \boldsymbol{A} is denoted by $|\boldsymbol{A}|$. Geometric interpretation of determinant is the (signed) change in the volume of the unit hypercube caused by the transformation defined by the matrix.

The determinant of a 2×2 matrix can be calculated by the formula:

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc}
$$

The above formula generalizes to larger matrices through a recursive definition.

Eigenvalues and eigenvectors of a matrix also have important applications. An eigenvector, \boldsymbol{v} and corresponding eigenvalue, λ, of a matrix \boldsymbol{A} is defined such that

$$
A v=\lambda v
$$

In (other) words, multiplying a matrix with one of its eigenvectors only changes the magnitude of the vector and does not change its direction.

Eigenvalues an eigenvectors have many applications from communication theory to quantum mechanics. A better known example (and close to home) is Google's PageRank algorithm. We will return to them while discussing PCA and SVD.

1.2 Derivatives and integrals

Differentiation and integration are two fundamental concepts in calculus. The reason we review some of the basic calculus here has to do with the fact that these operations are often used in probability theory and machine learning. In many machine learning problems, learning is achieved through minimizing an error function or maximizing an objective function (e.g., likelihood). A particularly important use of derivatives in machine learning is to find maxima or minima of error or objective function. This section provides a very short refresher on these topics, and define some notation that we will use throughout the course. You can safely skip this section if you know how to differentiate polynomial functions, or know what a gradient is.

Derivative of a function indicates the rate of change. The familiar example from physics is that the derivative of the velocity of a moving object is its acceleration. The velocity of a car changes proportional to its acceleration or deceleration.

One of the common ways of denoting a function's derivative is using the 'prime notation'. For example derivative of the function function $f(x)$ is indicated with $f^{\prime}(x)$. Another common notation is $\frac{d f}{d x}(x)$. For multi-variate functions, the latter notation makes it clear that the derivative is taken with respect to the variable x.

If defined, derivative of a function is another function. A well known example is the polynomials, whose derivatives are lower degree polynomials. For example, if $f(x)=x^{2}-2 x$ then $f^{\prime}(x)=2 x-2$, which means that the rate of change of a quadratic function doubles as x is increased one unit. Note that if a polynomial of degree n is differentiated n times, it becomes a constant. Derivative of a linear function is a constant value, since a linear function changes with the same rate everywhere. On the other hand, derivative of a constant (function) is 0 , since there is no change.

When evaluated at a particular x value, the derivative of the function is the slope of the tangent line at that point, which is an indication of the direction and the rate of change. Figure ?? presents a simple quadratic function, $f(x)=x^{2}-2 x$, and its derivative calculated at three points. The derivative of this function is $f^{\prime}(x)=2 x-2$, which is $-3,0$ and 4 at $x=-0.5, x=1$ and $x=3$ respectively. Note that the function has a minimum at $x=1$, where its derivative evaluates to 0 . The derivative is negative at $x=-0.5$, indicating the function is decreasing at this point, and positive derivative at $x=3$ indicates that function is increasing. Also note that the slopes of lines in Figure ?? indicate the rate of change. The rate of decrease at -0.5 is less steep in comparison to increase at 3.

The derivative of a continuous function is equal to 0 at the 'stationary' points, maxima, minima and saddle points. This is the main reason for our brief informal introduction. In many methods we see later, we are interested in maximizing or minimizing functions, where this will be a handy tool. In general, derivative evaluated at

A quick refresher on polynomial functions: if $f(x)=x^{n}$,

$$
f^{\prime}(x)=\frac{d f}{d x}=n x^{n-1}
$$

For example, for $f(x)=x^{3}+2 x^{2}$,

$$
f^{\prime}(x)=\frac{d f}{d x}=3 x^{2}+4 x
$$

Figure 1.11: The function $f(x)=x^{2}-$ $2 x$ and its derivative evaluated at, different x values.
a particular point maxima or minima of a function is 0 , it is a negative value if the function is decreasing (as x increases), and a positive value if the function is increasing with x.

So far, we have considered differentiation of functions of a single variable. In machine learning and NLP, we typically deal with multivariate functions, functions of more than one variable. The derivative of a function also generalizes to multi-variate functions. The direct generalization, total derivative, requires all arguments at the same time. We will not review how to take (total) derivatives of multi-variate functions. However, we will introduce partial derivatives briefly here. A partial derivative is similar to a total derivative, but we assume that except the variable along which we take the derivative, all other variables are constants. So, when you evaluate the partial derivative of a function at a particular point, it gives you the rate of change along one of the axes.

The partial derivative of a function f with respect variable x is denoted by $\frac{\partial f}{\partial x}$. For example, if $f(x, y)=x^{3}+y x$,

$$
\frac{\partial f}{\partial x}=3 x^{2}+y, \text { and } \frac{\partial f}{\partial y}=x
$$

The vector formed by all partial derivatives of a function of n-variables is called its gradient. Gradient of a function f is denoted by ∇f, or $\vec{\nabla} f$.

$$
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

Similar to derivative of a function of a single variable, gradient points to the direction of the greatest change, and the magnitude of the gradient indicates the steepness of the change. Areas where the gradient is 0 are (local) minima, maxima and saddle points. As a result, it is an important tool in finding minimum and maximum values of (objective) functions.

Integration is the inverse of the derivation. In general, the integral of a function in a given range corresponds to the (signed) area (or volume) under a function in this range. The notation used for integral of a function $f(x)$ is $F(x)=\int f(x) d x$. This is called an indefinite integral. Often we want the integral of a function in an interval [a, b], which can be calculated by

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

For example, if $f(x)=3 x^{2}$, we know that $F(x)=x^{3}$ (since the integral is the antiderivative, and $F^{\prime}(x)=f(x)=3 x^{2}$). If we want to know the area under $f(x)$ within range $[1,3]$, we simply calculate $F(3)-F(1)=27-1=26$.

Often integrating functions analytically (in closed form) is not easy or possible. In these cases, integrals can be computed with numeric approximation. One way to do this is to sum the areas of rectangles as demonstrated in Figure ??. As we decrease the width of

Figure 1.12: Integral of the function $f(x)=3 x^{2}$ in range $[1,3]$.

Figure 1.13: Demonstration of numerical approximation to an integral. Note that as the rectangles get smaller (as in the figure below), sum of their areas gets closer to the area under the curve.
the rectangles, or equivalently, increase the number of rectangles in a fixed range, the approximation will be more precise. This also hints at interpreting integrals as infinite sums. This interpretation will be useful for understanding some concepts we will see later (often in probability theory).

Summary

In this lecture, we reviewed some concepts from linear algebra and calculus. The aim is to provide a refresher for readers who studied these topics, familiarize the readers with the notation that will be used, and also give a feeling of the what mathematical concepts will be useful for following the rest of the course. This overview here is necessarily informal and incomplete. Below, a number of potential sources are listed if you need more comprehensive introduction to these concepts.

For linear algebra, cherney2013 and beezer2016 are two textbooks that are freely available online. A classic reference textbook for linear algebra is strang2009. For a more practical/geometric approach, see farin2014 or shifrin2011.

For the concepts we reviewed briefly from calculus, any textbook introduction to calculus should be sufficient. A well-known (also available online) textbook is strang1991. For more alternatives on open textbooks on mathematics see http://www.openculture.com/ free-math-textbooks.

