
Table 1.1: Counts of frequent words in
three documents.

the and of to in . . .

D1 121 106 91 83 43 . . .
D1 142 136 86 91 69 . . .
D3 107 94 41 47 33 . . .

1 Mathematical preliminaries

Being an interdisciplinary field, it is often difficult to assume that all
students of computational linguistics possess a (fresh) knowledge of
some of the mathematical topics and notation. This chapter provides
a highly coarse overview of some topics in linear algebra and calcu-
lus. The aim of this chapter is to provide a refresher or an listing
of concepts from basic math that is required in this course. The dis-
cussion here is necessarily incomplete and informal. The interested
reader should follow the references provided for in-depth treatments
of these subjects.

Section ?? introduces some topics from linear algebra. We will
mainly introduce vectors, matrices and operations on vectors and
matrices. These topics and notation will be important particularly in
understanding the machine learning methods covered in the class.

Section ??, briefly revisits derivatives and integrals. Derivatives
are used for finding maxima or minima of functions, which is the
basis for many of the machine learning methods. The integrals will
also come back in our discussion of some of the machine learning
methods, and in discussion of probabilistic learning and inference.

1.1 Linear algebra

In many NLP methods, we make heavy use of vectors and matrices,
which are objects studied in linear algebra. Vectors are used for rep-
resenting objects of interest, like words, documents or languages.
Typically, each element of a vector corresponds to some aspect, or
feature, of the object to be represented. As a very simplified example,
consider the word counts presented in Table ??, where, each row and
each column are vectors, and the whole table is a matrix.

In the example, we can consider the sequence of numbers on each
row as a representation of the document it corresponds to. Similarly,
each column can be considered as a representation of the correspond-
ing word. A large number of methods in NLP rely on such represen-
tations, and finding useful representations for linguistic objects has
been an important activity in computational linguistics. The repre-
sentation in Table ?? is rather simple, and has many problems (for
example, it is very sensitive to document size). With (more) useful
representations for linguistics objects, relations, such as similarities,
between the vectors indicate similarities of the objects they represent.
For example, words with the similar or same meaning would have
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Figure 1.1: A graphical representation
of a vector.
1 Not without exceptions, however. Un-
expected or unintuitive behavior of
mathematical objects and operations in
higher dimensional spaces are often
noted under the term curse of dimension-
ality.
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Figure 1.2: Example vectors in 2-
dimensional Euclidean space.

2 The norm of a vector is the distance
from its tail to its tip, or the distance be-
tween two objects is the norm of the dif-
ference between their vector representa-
tions.

similar representations. The other concepts or operations we revisit
in this lecture also represent to real-world manipulations or changes
on these objects. We will discuss more useful representations for
linguistic objects, mainly words and sentences, in later chapters.

In this section we will review some of the properties of vectors and
matrices, and the operations defined on them. If you had a linear
algebra course, of if you know, for example, matrix multiplication,
or dot product of vectors, you can safely skip this section.

1.1.1 Vectors

A vector is a mathematical object with a magnitude and a direction.
Graphically, we can represent or visualize a (two-dimensional) vector
as in Figure ??. The ‘picture’ is useful for getting a better intuition
about the objects and operations under study. However, we can only
visualize vectors in two and (with some effort) three dimensions.
Nevertheless, most of these intuitions generalize neatly to higher di-
mensional spaces.1

More commonly, we represent vectors by an ordered list of num-
ber, such as (1, 0, 1). A vector defined with n real numbers is said to
be in the vector space Rn. We often write a vector of n real numbers
(vectors in Rn) as v = (v1, v2, . . . , vn). Note that the v that stands for
the vector is typeset in boldface font. It can alternatively be marked
with an arrow over it, like ~v. Other notations for vectors of n num-
bers include

v = 〈v1, v2, . . . , vn〉 v = (v1, v2, . . . , vn) v =




v1
...
vn


 .

Geometrically, we represent vectors as arrows as in Figure ??. The
individual numbers on the notation represent the projection of the tip
of the vector to the respective axis. In the example on the right, for
example, the green and blue vectors have the same magnitude, but
their directions are opposite of each other. If we take the projections
of the vector to the x and y axes, they correspond to first and the
second number in our notation respectively.

Many operations defined on (real) numbers have analogous forms
for vectors, and they are frequently used in machine learning and
natural language processing, as well as many other branches of sci-
ence and engineering.

Vector norms are a generalization of the magnitude of a vector.
A norm assigns a non-negative length or size to a vector. Norms are
related to distance metrics which by themselves are useful in com-
paring objects represented as vectors.2 The most familiar norm is the
Euclidean norm, which is also known as L2 (or L2) norm. L2 norm
of a vector v = (v1, . . . , vn) is

‖v‖2 =
√
v21 + . . . + v2n .
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Figure 1.3: Visualizations of L2(solid
blue) and example L1 (dotted green, or-
ange and red) norms vector (3,3).
3 With some simplification, L0 norm of
vector is the number of non-zero entries
of the vector, and L∞ norm is the largest
absolute value among the entries of the
vector.
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Figure 1.4: Scalar multiplication.
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v+w
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v−w

Figure 1.5: Vector addition and subtrac-
tion.

The subscript 2 in ‖v‖2 indicates that the norm is L2 norm. The L2

norm is often taken to be the default. If the subscript is omitted then
we mean the L2 norm. Another interesting norm for our purposes is
the L1 norm, which is related to the so-called taxi-cab, city-block or
Manhattan distance. It is defined as

‖v‖1 = |v1|+ . . . + |vn| .

Figure ?? visualizes the L1 and L2 norms in two-dimensional Eu-
clidean space. For the example vector in Figure ??, we have

‖(3, 3)‖2 =
√
32 + 32 =

√
18 ≈ 4.24

‖(3, 3)‖1 = |3|+ |3| = 6 .

Like any other vector operation or property, vector norms can be
generalized to vectors of any dimension.

The concept of vector norm can also be generalized to any positive
integer p the Lp norm for an n-dimensional vector is defined as

‖v‖p =

(
n∑

i=1

|vi|
p

) 1
p

In this course, we will only work with L1 and L2 norms defined
above. You may occasionally see L0 or L∞ norms used in some
related literature.3

Scalar multiplication is the operation of multiplying a vector
with a scalar (for our purposes a scalar is a real number). Given a
vector v = (v1, . . . , vn), its multiplication with scalar a is defined as

av = (av1, . . . ,av2)

Multiplying a vector with a positive scalar changes its magnitude
(‘scales’ it) but does not change its direction. Multiplying a vector
with a negative scalar reverses the direction of the original vector.

Vector addition and subtraction are defined on two vectors
with the same number of dimensions. For n-dimensional vectors
v = (v1, . . . , vn) and w = (w1, . . . , vn),

v+w = (v1 +w1, . . . , vn +wn)

The subtraction is simply addition where the second vector is multi-
plied by −1.

v−w = v+ (−w) = (v1 −w1, . . . , vn −wn)
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‖v‖ cosα

Figure 1.6: Dot product of two vectors.

Dot product is a very important quantity that will come up regu-
larly in this course. Dot product of two vectors, v = (v1, . . . , vn) and
w = (w1, . . . , vw), is a scalar defined as:

v ·w = v1 ×w1 + . . . + vn ×wn

It should be emphasized that dot product yields a scalar (real
number), not a vector. There are other vector product operations:
outer product that we will discuss below, and cross product defined for
vectors in R3.

There is an alternative way to define the dot product, which also
leads to a nice geometric interpretation. We can calculate the dot
product as

v ·w = ‖v‖‖w‖ cosα (1.1)

where α is the angle between the two vectors (see Figure ??). This
also allows us to interpret the dot product geometrically. The dot
product of two vectors is proportional to each vector’s magnitude,
and also to the cosine of the angle between them. Since the cosine
of the angle will be larger for smaller angles, the dot product will be
larger for vectors that point to similar directions (keeping the magni-
tudes constant). The dot product of two orthogonal vectors (vectors
with a 90° angle between them) is 0. If the angle is larger than 90°,
the dot product is negative. Remember that like the other operations
we discuss here, the dot product and its interpretations generalizes
to higher dimensional vectors.

Cosine similarity is a similarity measure related to dot product,
which we will often use for measuring similarities between objects
of interest, e.g., documents. We can rewrite Equation ??, above to
calculate the cosine of the angle between two vectors as,

cosα =
vw

‖v‖‖w‖ .

The range of the cosine similarity is between −1 and 1. The cosine
similarity for vectors that point to the same direction is 1 (regard-
less of their magnitude) and the vectors that point exact opposite
directions have a cosine similarity of −1. Note that by dividing the
vectors to their Euclidean (L2) norms, we are scaling them to unit
vectors while keeping their directions the same. As a result, cosine
similarity ignores the magnitudes of the vectors. This is generally
more appropriate when the ratios between the entries of a vector
matters more than the magnitude of the vector. For example, if we
represent documents with vectors of word counts (we will return to
this representation later), the cosine similarity would be less sensitive
to document length in comparison to the dot product.
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1.1.2 Matrices

Matrices are the second type of mathematical objects we often use in
various NLP methods. A matrix is simply a two-dimensional array
of numbers, which is noted as a rectangular placement of scalars. A
matrix of n rows and m columns is an n×m matrix. A real-valued
n×m matrix is said to be in Rn×m. We can think about a matrix
as a collection of column or row vectors. We denote matrices with
boldface capital letters, like A. While referring to a matrix’ elements,
we subscript the element first with its row and then its column.

A =




a1,1 a1,2 a1,3 . . . a1,m

a2,1 a2,2 a2,3 . . . a2,m
...

...
...

. . .
...

an,1 an,2 an,3 . . . an,m




We will briefly revisit some of the operations on matrices in this
section.

Transpose of a matrix simply replaces its rows by columns. Trans-
pose of a matrix A is denoted with AT .

If A =



a b

c d

e f


, AT =

[
a c e

b d f

]
.

Multiplication by a scalar is also defined for matrices. To mul-
tiply a matrix with a scalar, each element of the matrix is multiplied
by the scalar. For example,

2

[
2 1

1 4

]
=

[
2× 2 2× 1
2× 1 2× 4

]
=

[
4 2

2 8

]

Matrix addition and subtraction require two matrices of same
dimensions. To obtain sum (or difference) of two matrices, each ele-
ment of the second matrix is added to (or subtracted from) the cor-
responding element of the first matrix. For example:

[
2 1

1 4

]
+

[
0 1

1 0

]
=

[
2+ 0 1+ 1

1+ 1 4+ 0

]
=

[
2 2

2 4

]

Matrix multiplication is a slightly complicated operation. The
matrix multiplication A×B is defined only if A has the same number
of columns as the number of rows in B. Multiplying a n× k matrix
with a k×m matrix results in a n×m matrix. Note that both A×B

and B×A is defined only for square matrices (of same dimensions).
If A×B = C, the element of the resulting matrix C on row i and

column j, ci,j, is calculated as:

cij =

k∑
`=0

ai`b`j
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I4 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Figure 1.8: The 4× 4 identity matrix.

Figure ?? demonstrates the matrix multiplication.

a11 a12 . . . a1k

a21 a22 . . . a2k

...
...

. . .
...

an1 an2 . . . ank







×
b11 b12 . . . b1m

b21 b22 . . . b2m

...
...

. . .
...

bk1 bk2 . . . bkm







=
c11 c12 . . . c1m
c21 c22 . . . c2m

...
...

. . .
...

cn1 cn2 . . . cnm







c12 = a11b12 + a12b22 + . . .a1kbk2

Figure 1.7: Matrix multiplication. The
calculation of the resulting matrix c12

is highlighted.
Note that the element cij is the dot product of ith row vector of

A and jth column vector of B.
This also means we can view dot-product as matrix multiplication

of a row vector (on the left) and column vector (on the right). Dot
product of two vectors v and w is often noted as vTw (it is a common
convention to assume that vectors are column vectors unless stated
otherwise). Technically, result of a matrix multiplication of a 1× k
vector with a k× 1 vector is a 1× 1 matrix, not a scalar. However,
this notation is prevalent in machine learning and NLP literature,
and, in general, it is common not to distinguish scalars from vectors
and matrices with a single entry.

For example, v = (2, 2) and w = (2,−2),

vTw =
[
2 2

]
×
[
2

−2

]
= 2× 2+ 2× − 2 = 4− 4 = 0 .

Outer product of two vectors with the same dimensionality, can
also be defined as matrix multiplication. This time we put the col-
umn vector to the left and the row vector to the right. So, in the
notation used above, outer product of two matrices v and w is vwT .
Note that result of outer product of two k-dimensional vectors is a
k× k matrix, not a scalar. The following is an example of outer prod-
uct of two 3-dimensional vectors.

[
1 2 3

]
×



6

5

4


 =



6 5 4

12 10 8

18 15 12




Note that outer product does not require vectors to have the same
dimensionality.

An identity matrix is a square matrix in which all the elements
of the main diagonal are ones, and all other elements are zeros. The
n×n identity matrix is denoted by In. When there is no ambiguity,
we omit the subscript, and simply write I. Multiplying a matrix with
a compatible identity matrix does not change the original matrix. For
n×m matrix A,

InA = AIm = A
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(1,2) (3,2)

Figure 1.9: Stretch (three times) along x.

(1,2)

(−2,1)

Figure 1.10: Rotate 90 degrees.

Multiplying a vector with a matrix (linearly) transforms it
to another (possibly a different dimensional) vector. These linear
transformations have many applications, and they will also be useful
for understanding some of the machine learning concepts. Here we
revisit a few interesting transformations in 2-dimensional space:

• Identity transformation has no effect on the vector to be trans-
formed

[
1 0

0 1

]
×
[
1

2

]
=

[
1

2

]

• Stretch along x-axis
[
3 0

0 1

]
×
[
1

2

]
=

[
3

2

]

• Multiplying a vector with
[

cos θ − sin θ
sin θ cos θ

]

rotates it with θ degrees. For example, for 90-degrees rotation,
[

cos 90 − sin 90
sin 90 cos 90

]
×
[
1

2

]
=

[
0 −1

1 0

]
×
[
1

2

]
=

[
−2

1

]

These linear operations can be combined (composed) for more
complex transformations.

Solving a set of linear linear equations has been one of the
main applications of linear algebra. We will not discuss how to solve
a linear equations here (since we rarely do this by hand), but we
will demonstrate how a set of linear equations are represented using
matrices and vectors. We will encounter this in various forms during
the course.

The set of equations,

2x1 + x2 = 6

x1 + 4x2 = 17

can be written as:
[
2 1

1 4

]

︸ ︷︷ ︸
W

[
x1

x2

]

︸ ︷︷ ︸
x

=

[
6

17

]

︸ ︷︷ ︸
b

(1.2)

which allows finding a solution (if one exists) using a method called
Gaussian elimination.

For our purposes, the important point is to realize that this amounts
to the matrix/vector operations operations we have been reviewing
so far.
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Inverse of a matrix is defined for square matrices. Inverse of
matrix W is denoted by W−1. Multiplying a matrix with its inverse
yields the identity matrix.

WW−1 = W−1W = I

Now that we have defined the inverse of a matrix, we can solve
a set of linear equations represented with matrices and vectors as in
Equation ?? easily:

Wx = b

W−1Wx = W−1b

Ix = W−1b

x = W−1b

Calculating inverse of a matrix involves using a set of operations,
called elementary row operations, on the augmented matrix that con-
tains the original matrix and the identity matrix side by side. We will
not cover this here, as we rarely do this by hand. Interested readers
should check any of the linear algebra sources listed at the end of the
chapter.

The determinant of a matrix is a scalar value with some inter-
esting properties and applications, including

• A matrix is invertible if it has a non-zero determinant

• A system of linear equations has a unique solution if the coeffi-
cient matrix has a non-zero determinant

We denote the determinant of a matrix with vertical bars around
it, determinant of A is denoted by |A|. Geometric interpretation of
determinant is the (signed) change in the volume of the unit hyper-
cube caused by the transformation defined by the matrix.

The determinant of a 2× 2 matrix can be calculated by the for-
mula: ∣∣∣∣∣

a b

c d

∣∣∣∣∣ = ad− bc

The above formula generalizes to larger matrices through a recursive
definition.

Eigenvalues and eigenvectors of a matrix also have important
applications. An eigenvector, v and corresponding eigenvalue, λ, of a
matrix A is defined such that

Av = λv .

In (other) words, multiplying a matrix with one of its eigenvectors
only changes the magnitude of the vector and does not change its
direction.

Eigenvalues an eigenvectors have many applications from com-
munication theory to quantum mechanics. A better known example
(and close to home) is Google’s PageRank algorithm. We will return
to them while discussing PCA and SVD.
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A quick refresher on polyno-
mial functions: if f(x) = xn,

f ′(x) =
df

dx
= nxn−1 .

For example, for
f(x) = x3 + 2x2,

f ′(x) =
df

dx
= 3x2+4x .

f(x) = x2 − 2x

f ′(1) = 0

f ′(3) = 4

f ′(−0.5) = −3

Figure 1.11: The function f(x) = x2 −

2x and its derivative evaluated at, dif-
ferent x values.

1.2 Derivatives and integrals

Differentiation and integration are two fundamental concepts in cal-
culus. The reason we review some of the basic calculus here has to
do with the fact that these operations are often used in probability
theory and machine learning. In many machine learning problems,
learning is achieved through minimizing an error function or max-
imizing an objective function (e.g., likelihood). A particularly im-
portant use of derivatives in machine learning is to find maxima or
minima of error or objective function. This section provides a very
short refresher on these topics, and define some notation that we
will use throughout the course. You can safely skip this section if
you know how to differentiate polynomial functions, or know what
a gradient is.

Derivative of a function indicates the rate of change. The famil-
iar example from physics is that the derivative of the velocity of a
moving object is its acceleration. The velocity of a car changes pro-
portional to its acceleration or deceleration.

One of the common ways of denoting a function’s derivative is
using the ‘prime notation’. For example derivative of the function
function f(x) is indicated with f ′(x). Another common notation is
df
dx (x). For multi-variate functions, the latter notation makes it clear
that the derivative is taken with respect to the variable x.

If defined, derivative of a function is another function. A well
known example is the polynomials, whose derivatives are lower de-
gree polynomials. For example, if f(x) = x2 − 2x then f ′(x) = 2x− 2,
which means that the rate of change of a quadratic function doubles
as x is increased one unit. Note that if a polynomial of degree n is
differentiated n times, it becomes a constant. Derivative of a linear
function is a constant value, since a linear function changes with the
same rate everywhere. On the other hand, derivative of a constant
(function) is 0, since there is no change.

When evaluated at a particular x value, the derivative of the func-
tion is the slope of the tangent line at that point, which is an indi-
cation of the direction and the rate of change. Figure ?? presents a
simple quadratic function, f(x) = x2 − 2x, and its derivative calcu-
lated at three points. The derivative of this function is f ′(x) = 2x− 2,
which is −3, 0 and 4 at x = −0.5, x = 1 and x = 3 respectively.
Note that the function has a minimum at x = 1, where its derivative
evaluates to 0. The derivative is negative at x = −0.5, indicating the
function is decreasing at this point, and positive derivative at x = 3

indicates that function is increasing. Also note that the slopes of lines
in Figure ?? indicate the rate of change. The rate of decrease at −0.5
is less steep in comparison to increase at 3.

The derivative of a continuous function is equal to 0 at the ‘sta-
tionary’ points, maxima, minima and saddle points. This is the main
reason for our brief informal introduction. In many methods we
see later, we are interested in maximizing or minimizing functions,
where this will be a handy tool. In general, derivative evaluated at
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Figure 1.12: Integral of the function
f(x) = 3x2 in range [1,3].

Figure 1.13: Demonstration of numeri-
cal approximation to an integral. Note
that as the rectangles get smaller (as in
the figure below), sum of their areas
gets closer to the area under the curve.

a particular point maxima or minima of a function is 0, it is a nega-
tive value if the function is decreasing (as x increases), and a positive
value if the function is increasing with x.

So far, we have considered differentiation of functions of a sin-
gle variable. In machine learning and NLP, we typically deal with
multivariate functions, functions of more than one variable. The
derivative of a function also generalizes to multi-variate functions.
The direct generalization, total derivative, requires all arguments at
the same time. We will not review how to take (total) derivatives of
multi-variate functions. However, we will introduce partial derivatives
briefly here. A partial derivative is similar to a total derivative, but
we assume that except the variable along which we take the deriva-
tive, all other variables are constants. So, when you evaluate the
partial derivative of a function at a particular point, it gives you the
rate of change along one of the axes.

The partial derivative of a function f with respect variable x is
denoted by ∂f

∂x . For example, if f(x,y) = x3 + yx,

∂f

∂x
= 3x2 + y, and

∂f

∂y
= x.

The vector formed by all partial derivatives of a function of n-variables
is called its gradient. Gradient of a function f is denoted by ∇f, or
~∇f.

∇f(x1, . . . , xn) =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)

Similar to derivative of a function of a single variable, gradient points
to the direction of the greatest change, and the magnitude of the gra-
dient indicates the steepness of the change. Areas where the gradient
is 0 are (local) minima, maxima and saddle points. As a result, it is
an important tool in finding minimum and maximum values of (ob-
jective) functions.

Integration is the inverse of the derivation. In general, the inte-
gral of a function in a given range corresponds to the (signed) area
(or volume) under a function in this range. The notation used for
integral of a function f(x) is F(x) =

∫
f(x)dx. This is called an indefi-

nite integral. Often we want the integral of a function in an interval
[a,b], which can be calculated by∫b

a
f(x)dx = F(b) − F(a).

For example, if f(x) = 3x2, we know that F(x) = x3 (since the
integral is the antiderivative, and F ′(x) = f(x) = 3x2). If we want
to know the area under f(x) within range [1, 3], we simply calculate
F(3) − F(1) = 27− 1 = 26.

Often integrating functions analytically (in closed form) is not
easy or possible. In these cases, integrals can be computed with
numeric approximation. One way to do this is to sum the areas of
rectangles as demonstrated in Figure ??. As we decrease the width of
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the rectangles, or equivalently, increase the number of rectangles in a
fixed range, the approximation will be more precise. This also hints
at interpreting integrals as infinite sums. This interpretation will be
useful for understanding some concepts we will see later (often in
probability theory).

Summary

In this lecture, we reviewed some concepts from linear algebra and
calculus. The aim is to provide a refresher for readers who studied
these topics, familiarize the readers with the notation that will be
used, and also give a feeling of the what mathematical concepts will
be useful for following the rest of the course. This overview here is
necessarily informal and incomplete. Below, a number of potential
sources are listed if you need more comprehensive introduction to
these concepts.

For linear algebra, cherney2013 and beezer2016 are two textbooks
that are freely available online. A classic reference textbook for linear
algebra is strang2009. For a more practical/geometric approach, see
farin2014 or shifrin2011.

For the concepts we reviewed briefly from calculus, any textbook
introduction to calculus should be sufficient. A well-known (also
available online) textbook is strang1991. For more alternatives on
open textbooks on mathematics see http://www.openculture.com/

free-math-textbooks.

http://www.openculture.com/free-math-textbooks
http://www.openculture.com/free-math-textbooks

