
1 Machine learning basics

Statistical methods, particularly methods from machine learning, has
been the most successful solutions for many problems in natural lan-
guages processing. The methods from machine learning dominates
the field

Machine learning is about learning from data. Instead of writ-
ing a specialized program based on expert knowledge for solving a
problem, we rely on generic ‘programs’, or models, which learn from
data. As noted above, this has proven useful in many applications.
However, machine learning also offers us ways to analyze the data
at hand and arrive at generalizations that are sometimes impossible
without use of these techniques.

This lecture introduces some of the basic ideas behind machine
learning, alongside linear regression, a simple but fundamental model
for learning from data.

1.1 Machine learning: broad categorization of methods

Machine learning methods are categorized into a number of broad
categories in the literature. Most commonly, the methods are cate-
gorized based on the amount of supervision they need. On the one
hand, a supervised method requires labeled data. That is, every object
we want to classify (e.g., a document) has to be annotated with target
information we want to predict (e.g., the author of the document) in
the training data. An important point to always keep in mind is that
we want machine learning models to make good predictions outside
their training data. We want our models to generalize, not to mem-
orize. On the other hand, an unsupervised method does not require
any target label or information. The aim is to use the differences
and similarities between the data points for finding useful patterns.
The methods that exploit both annotated data (with target label/in-
formation) and unannotated data are called semi-supervised. Another
interesting class of methods where success and failure is not asso-
ciated with individual predictions but a collection of them is called
reinforcement learning.

In this course we mostly focus on supervised methods, but also
cover some of the unsupervised methods commonly used in the field.

In supervised learning the training data contains what we want
to predict. The task of the system is, then, to learn this predictions

Draft lecture notes. Version: db84779@2021-06-13; ml-basics.tex cb

6 statistical nlp: course notes

1 And, we will repeat this many times
in this class.

0 2 4 6 8

0

2

4

6

8

5.5

5.7

x

y

Figure 1.2: A demonstration of simple
linear regression.

x
2

x1

?

+ +
+

+

–

–

–

–

Figure 1.3: A demonstration of classifi-
cation problem.
2 The discriminant does not have to be
linear, and with more predictors, the
discriminant is a surface in a higher-
dimensional space.

from the training data in a way that it is useful for making predic-
tions for new, unseen instances. An overall picture of supervised
learning is provided in Figure ??.

predictiontraining

training
data

features

labels

ML
algorithm ML model

features

new data

predicted
label

Figure 1.1: A schematic presentation of
supervised learning.

During training, we need both our training data and the asso-
ciated predictions (indicated as ‘labels’ in Figure ??). Typically, the
objects we want to work with cannot be used directly with a machine
learning algorithm. We need to first extract features that are useful
for prediction and represent them in a form the machine learning
algorithms can work with. For example, to classify documents, we
may use the length of the documents, or number of times a par-
ticular word occurs in the document as features. The role of the
machine learning algorithm is to find the best model (among a fam-
ily of models) based on the training data. During prediction time,
we first extract the features from a new data instance the same way
we did during training, and predict the outcome using the model.
An important point that is worth repeating is we want our model to
perform well on the new data.1

If a supervised machine learning model predicts a numeric value
it is called a regression model. A simple regression model predict-
ing one numeric variable (y) from a single numeric predictor (x) is
demonstrated in Figure ??. The small circles on the plot represent
the pairs of x,y values observed. The red line is the model after ob-
serving this ‘training’ data. Once we have the model, our predictions
for the new data points will be based on this line. The blue lines on
the figure demonstrate the prediction of the model for x = 5.5, which
turns out to be 5.7 according to this model.

If the model predicts a category or a label, it is called a classification
model. Figure ?? demonstrates an example setting for classification,
where the points marked with + and − are the data points expressed
in a two dimensional feature space. Unlike in the example above,
both axes correspond to features in Figure ??. The outcome, the
category, is represented by the shape of the data point. Similar to
regression, we estimate a model on the training data. Typically a
classification model defines a a discriminant, depicted as a thick black
line in Figure ??.2 The aim is to predict the class (+ or −) of an unseen

machine learning basics 7

Figure 1.4: A set of unlabeled data
points in a two-dimensional feature
space.

3 Note that x is a vector. In case of a
single predictor, we also use the symbol
x (a scalar, not a vector).

data point.
In NLP we use classification more often than regression, since

many properties of natural language data we want to predict are
categorical. However, besides occasional practical use, understand-
ing regression will also help understanding other machine learning
methods in general. In this lecture we will introduce some of the ba-
sic concepts and issues in machine learning through regression, and
return to classification next.

Unsupervised learning refers to a set of methods that allow find-
ing interesting or useful patterns that are not explicitly marked in
the data. Figure ?? show a set of data instances plotted on a two-
dimensional space (based on two features). For example, these dots
could represent the instances of speech sounds, while the features
(axes) could be frequency and duration of each instance. Not having
any labels (e.g., phonemes, or speakers these points belong to), we
cannot use a supervised learning algorithm. However, it is easy for
human eye to pick two groups in the data presented in Figure ??.
Such methods allow exploring the data to gain insights into the pro-
cess that created the data, or find useful patterns. However, once
we build a model based on the extracted pattern, we can also as-
sign group, or cluster memberships to new data items. Although we
cannot assign a meaningful name to the clusters automatically, being
able assign data points to clusters is also useful for supplementing
supervised methods.

Most commonly used unsupervised methods include clustering,
density estimation and dimensionality reduction. Clustering refers to
the process we described above: given a set of unlabeled data points,
the aim is to find a ‘natural grouping’ within the data. Density es-
timation is similar to clustering, but we assume data comes from a
mixture of probability densities. As a result, each data point receives
a probability (or likelihood) of coming from one of these probability
distributions. In a way, density estimation makes ‘soft assignments’
to each density, or cluster. Dimensionality reduction aims to reduce
a data set defined in a high-dimensional feature space into a lower
dimensional space while retaining most of the information the data.
We will revisit all these methods and discuss them in more detail
later in this class.

1.2 The linear regression model

The linear regression is a simple, yet a fundamental method in statis-
tics (and machine learning). A simple linear regression model pre-
dicts value of a numeric variable, conventionally denoted y, from a
set of predictors, denoted x.3 In the simplest case of a single predic-
tor, the model is expressed by Equation ??, which corresponds to a
line in a two-dimensional Euclidean space.

y = a+ bx (1.1)

8 statistical nlp: course notes

4 The symbols a and b for intercept and
slope are widely used conventions (e-
specially in statistics). However, alter-
native notations instead of a and b in-
clude

• α and β

• θ0 and θ1

• w0 and w1
The indexed notations help when we
extend this single-predictor model to
multiple predictors. In some neural net-
work literature intercept is sometimes
denoted with letter b, as it is also called
the bias term.

x

y

y
=
1
−
x

y
=
1
+
1
2
x

y
=
1
2
x

y = −1

Figure 1.5: Example instances of Equa-
tion ??.

−2
0

2−2

0

2
−5

0

5

x1
x2

y

Figure 1.6: Visualization of a linear of
a linear equation with two predictors:
y = 1− 2x2+x1.
5 Note that x0 is always 1.

−4 −2 2 4

−4

−2

2

4

x

y

Figure 1.7: A typical data set for regres-
sion (dots). And possible linear regres-
sion models (blue and red lines).

where y is the outcome variable we want to predict, x is our single
predictor, and a and b are the parameters of the model, which are
called intercept and slope respectively.4 The intercept is the value at
which the line ‘intercepts’ the y axis, and the slope is the slope of the
line representing the linear equation on Euclidean space. Slope indi-
cates the amount of change in y for each unit change in x. Figure ??
demonstrates a few examples of linear equations with different slope
and intercept values.

A positive slope means the outcome y increases as x increases,
while a negative slope indicates a decrease in y value as x increases.
A slope of 0 simply means y is constant, it is not affected by the val-
ues of x, or in other words, the outcome and predictors are (linearly)
independent.

The equation generalizes to multiple predictors trivially. For k
predictors, we have

y = w0 +w1x1 +w2x2 + . . . +wkxk . (1.2)

We can simplify the notation by specifying the weight vector as
w = (w0, . . . ,wk) and the input vector as x = (1, x1, . . . ,wk).5 Then
Equation ?? becomes

y = wx.

With multiple predictors, the equation defines a (hyper)plane. Fig-
ure ?? visualizes an example linear model with two predictors. With
multiple predictors, we have multiple coefficients indicating the slope
for each predictor. They still indicate the amount of change in the
outcome variable for unit change in the corresponding predictor
while all other predictors are kept constant. Effects of all predic-
tors are additive, and independent of the effects of the other predic-
tors. In the example in Figure ??, negative slope of x1 means that
y decreases as x1 increase, while positive slope for x2 means that
increasing x2 increases y. The value of y, however, is determined
based on the linear combination of both. Beyond 2 predictors (three
dimensions including the outcome variable), the visualization be-
comes impossible. However, the idea of a relationship, determined
by a hyperplane generalizes to higher dimensions as well.

1.3 Estimating parameters

The model we briefly discussed above is useful for modeling a vast
amount of phenomena. The linear model is most likely the most
common tool used across all modern sciences. Equation ?? defines
a ‘model family’. Each choice of intercept and slope values defines
another model. Like any other machine learning method, we do not
intend to make up the parameters, but to learn these regression pa-
rameters from data. We now turn to the question of how to find the
‘best’ parameters given a data set with observations of both predic-
tors and the outcome variable.

machine learning basics 9

6 Also called an error function, or objec-
tive function.

−4 −2 2 4

−4

−2

2

4

x

y

−4 −2 2 4

−4

−2

2

4

x

y

Figure 1.8: Demonstration of the er-
rors made by the models represented by
blue (top) and the red (bottom) lines in
Figure ??.
7 Mainly, the absolute value function is
not differentiable everywhere.
8 The first element of the parameter vec-
tor, w0, is the intercept, and the first
element of the input vector xi (xi,0) is
the constant 1.

In case of regression, the data we use looks like the one presented
in Figure ??. We have a continuous predictor x, and we want to
predict the value y, where we have 10 observations (or data points,
or training instances) represented by the dots in the figure. Our aim
is to find a linear equation, a line like the ones presented in Figure ??,
that allows us to predict y values for the future observations that
are similar to the ones in the data set. We can view learning as
choosing the best line among all possible lines. Figure ?? presents
two candidate models with blue and red lines. Intuitively, the blue
line is better than the red one. However, our aim is to formalize
which models are better than the others, and find the best one given
the data at hand.

The most common approach for estimating model parameters is
to define an loss function6 and find the parameter values that min-
imize the error on the training data. Figure ?? demonstrates the
errors made by the two alternative models on the data presented in
Figure ??. It is clear that the sum of the errors (the vertical lines) for
the model represented with the blue line is smaller, and we should
prefer this one instead of the red one.

So, to find the best linear regression line, we may look for the
model parameters that minimize the sum of the lengths of the verti-
cal line segments depicted in Figure ??. For the ith data point (xi,yi)
the error is simply the difference between the observed y-value, yi
and the model’s prediction for xi, which is simply a+ bxi. A typi-
cal notation for estimated values (in contrast to than real/observed
ones) is to indicate it on the variable with a hat. Hence, we indicate
the prediction of the model for data point i, as ŷi = a + bxi, and
the error (or residual) in this case would be yi − ŷi. Since we want
this value to be lower for the whole data set, we want to minimize
the sum of this error over all data points. However, error as formal-
ized above will be negative for some of the training examples, and
positive for others. As a result, minimizing the sum of this error is
not useful. A reasonable quantity to minimize is the absolute value
of the error, |yi − ŷi|. However, the absolute value function does not
have some of the nice algebraic properties of squared differences.7

The most commonly used error function for linear regression is the
sum of squared errors, (yi − ŷi)2. Which is a convenient function
to minimize, and as we will revisit later, it yields the model that as-
signs maximum likelihood to the data under the assumption that the
errors are normally distributed.

In summary, a linear regression model is typically estimated from
data by minimizing the error function

E(a,b) =
∑
i

yi − (a+ bxi)︸ ︷︷ ︸
ŷi

2

. (1.3)

To generalize it to any number of predictors, or coefficients, using
the vector notation described earlier,8 we simply write

10 statistical nlp: course notes

9 Particularly, least-squares regression is
known to be sensitive to large residu-
als, especially if those are close to the
extreme values of the predictor. Es-
timating a regression model by mini-
mizing absolute values for the residu-
als is more ‘robust’ against the outliers,
and often used as a robust alternative
to least-squares regression.

10 We know from central limit theorem
that this is a reasonable assumption in
many problems, since the errors are
likely to be due to sum of many ran-
dom factors (variables).

E(w) =
∑
i

(yi − ŷi)
2 , where ŷi = wxi. (1.4)

You should have realized that we express the error function as a
function of model parameters (and not the predictors) in the above
formulations. Even though we call them ‘variables’, the input and
output are constant values during training. The variable of interest
during training a simple regression model are the parameters a and
b. Furthermore, as it is clear in Equation ?? that the error function is
a quadratic function (a polynomial of degree 2) of model parameters
(a and b). Quadratic functions are convex functions with a single
global minimum. Taking the derivative of the error function, setting
it to 0 and solving it results in the a and b values that yield the
minimum error on the training data. We will skip the derivation
here, but present a version of the solution below. The best a and b
values that minimize the sum of squared errors are

b =
σxy

σ2x
= rxy

σy

σx
and a = ȳ− bx̄.

where ȳ and x̄ are the means of x and y, σxy is the covariance of
x and y, and σ2x is the variance of x, and rxy is the correlation co-
efficient between x and y. The important thing to note is that, the
slope indicates the relation between x and y. In particular, it is pro-
portional to the covariance between the variables, or, as the second
formulation of b indicate, it is a scaled version of the correlation be-
tween the predictor and the outcome variable.

1.4 Least-squares regression as maximum-likelihood estima-
tion

One of the reasons for using squared errors is the fact that sum of
squared errors are mathematically convenient to work with. In a
way, there is nothing special about minimizing sum of squared er-
rors. One can also minimize some other measure of error, for exam-
ple, sum of absolute values of the residuals. In fact, there are cases
where such an alternative estimation method is desirable.9 The error
function defined this way, e.g., unlike sum of absolute errors, is dif-
ferentiable and convex. Hence, it allows us to find an exact analytic
solution to the minimization problem. However, there is another fact
that makes least-squares regression interesting.

A general method of estimation in statistics and machine learning
is the maximum-likelihood estimation (MLE). The general idea of the
MLE is this: given a family of models, we prefer the one that assigns
the maximum likelihood to the observed (training) data. In case of
linear regression, to be able to determine the likelihood of a particu-
lar data point (xi,yi), we need to make an assumption about how the
data is distributed around the regression line. If we assume that the
residuals are distributed normally with zero mean,10 then likelihood
assigned to a particular data point (xi,yi) is L(w) = p(yi | xi;w).
Note that we view likelihood as a function of model parameters.

machine learning basics 11

11 Since logarithm of a variable in-
creases and decreases (monotonically)
with the value of the variable, maximiz-
ing or minimizing the logarithm will
maximize or minimize the variable it-
self.

12 It is not really difficult to follow
though. All you need to remember is
that logex = x, and constants (the
terms that do not include the model
parameters) do not affect minimiza-
tion, and they can be dropped. Also
note that the only term in the equation
that depends on the parameters is the
model’s estimation ŷ.

13 Slightly more in detail, the columns
of matrix X in this equation is said to
span a vector space. We can find an ex-
act solution, if the vector y can be ex-
pressed as a linear combination of the
column vectors of X (if y lies on the
same vector space). If not, which is the
typical case for regression, then we find
the orthogonal projection of y onto the
vector space defined the columns of X.
This point is the closest point to y on
the column space of X, hence the opti-
mal solution.

Informally, the model will assign high likelihood if the data point is
close to its prediction, and for data points farther from the model pre-
diction, likelihood will be low. Since we assume that each data point
is independently sampled, we obtain the likelihood of the training
data by multiplying the individual likelihoods of all the data points.
As a result, we want to maximize

L(w) =
∏
i

p(yi | xi,w)

where p(·) is the probability density function of the normal distri-
bution. In practice, we prefer to work with logarithms, and mini-
mization rather than maximization.11 Now, if we put all of the above
together we want to minimize the objective function E(w)

ŵ = arg min
w

− logL(w)

= arg min
w

− log
∏
i

e
−

(yi−ŷi)
2

2σ2

σ
√
2π

= arg min
w

−
∑
i

log e−
(yi−ŷi)

2

2σ2 − logσ
√
2π

= arg min
w

∑
i

(yi − ŷi)
2 .

The derivation above skips over some details, and it is not essential
to follow all the steps for our purposes.12 However, what it tells us
it that if we assume that the residuals are distributed normally, the
least-squares solution is also the maximum likelihood solution.

There is also another view of linear regression with a neat geo-
metric interpretation (from linear algebra) which forms the basis for
practical estimation algorithms for regression. We will not detail this
view in this course (requires a fair degree of linear algebra knowl-
edge), but briefly sketch the main concept. We noted earlier that one
of the common applications of linear algebra is solving simultaneous
equations of with multiple variables. We can view the training set of
a linear regression model as a system of linear equations Xw = y.
In certain special cases, we can find an exact solution to this system
of equations. However, this is not possible for typical use of linear
regression. Instead, we can use linear algebra techniques to find a
solution that leads to minimum error.13

1.5 Measuring success

For any machine learning system, we need a way to measure its
success. Remember, however, our aim is to generalize, and predict
new data correctly rather doing well on the training set. We will
leave this issue aside for now, and concentrate on the measures we
use to assess the success of the model.

The error function we use during estimation provides a clear met-
ric of success. The smaller the error, the better the model. In case of

12 statistical nlp: course notes

ȳ

y

ŷ

x

Total variation
Unexplained variation

Explained variation

Figure 1.9: A visualization of the ex-
plained and unexplained variation in
regression.

regression, the error we minimize is the sum of squared error (SSE).
However, this sum depends on the size of the data it is calculated
on. Hence, we want to take the effect of the data size out, so that
two systems that are tested on different data sets should be compa-
rable. One can easily achieve this by taking the mean of the SSE,
MSE. However, it is often desirable to measure the error in the same
units as our data. For example, if our task is to evaluate a regression
model predicting grades of student essays, we want to know the er-
ror in number of grade points on average, rather than its square.
Hence, the most error common measure to check and report is the
root mean square error (RMSE), which is defined as

RMSE =

√√√√ 1

n

n∑
i

(yi − ŷi)2.

Another quantity, that measures success rather than error, is co-
efficient of determination (R2). R2 is the ratio of conditional variance
(the variance around model prediction) divided by the variance of
the unconditional mean of the outcome variable y. As expected, the
coefficient of determination is also related to RMSE. Put more for-
mally,

R2 =

∑n
i (ŷi − ȳ)

2∑n
i (yi − ȳ)

2
= 1−

(
RMSE

σy

)2
. (1.5)

The R2 is unitless, and can be interpreted as the variation in the
data explained by the model. This is depicted in Figure ??. The ac-
tual observation for x in the figure is denoted with y, while model’s
prediction, conditional mean of y given x, is ŷ. The unconditional
mean of the outcome variable is denoted with ȳ. Total variation (for
this data point) refers to the distance of the observation from the
mean ȳ. If we did not know x, ȳ would be our best guess. For this
particular data point, knowing x helps the model to make a better
prediction. The dashed line segment drawn in blue is the amount
the model helps. Yet, we still have some error, the ‘unexplained
variation’ marked with red in the figure. The R2 is the ratio of the
explained variation to the total variation. For a simple regression
model, R2 is the square of the correlation coefficient between x and
y. However, as you can also see from Equation ??, R2 can be calcu-
lated for a regression model with any number of predictors, and the
interpretation stays the same. R2 measures the dependence of the
linear combination of the predictors and the outcome variable.

1.6 Linearity in linear regression

Linear regression, as we discussed so far is suited for problems where
the relation between the predictors and outcome variable is linear.
Sometimes, however, the relation is known to be non-linear. For ex-
ample, if we want to predict some cognitive ability through lifetime,

machine learning basics 13

0 2 4 6 8 10

0

5

10

x

y

Figure 1.10: A typical data set for re-
gression (dots). And possible linear re-
gression models (blue and red lines).

0 2 4 6 8 10

0

5

10

x

y
linear (R2 = 0.36)

order 2 (R2 = 0.96)

order 7 (R2 = 0.97)

Figure 1.11: Example polynomial re-
gression models fit to the same data in
Figure ??.

2 4 6 8 10
0.7

0.8

0.9

1

polynomial order

r2

train

test

Figure 1.12: Progression of training and
test errors in polynomial regression, as
the order of the polynomial increased.

it is likely that it will improve first during childhood, and then dete-
riorate in later life with aging. Similarly, rate of increase or decrease
of the outcome conditioned on the predictor(s) may not be constant.
Figure ?? shows such a data set, with the linear regression fit as de-
scribed above.

Although the linear equation found does not seem too bad (R2 =

0.36), it is clear that a curve could be a better fit than a line. In other
words, the relation between x and y seems non-linear.

Despite the word ‘linear’ in the name, the estimation method
above works perfectly well for non-linear combinations of the input
variable(s) as well. The important restriction about the linearity is
about the model parameters, w. As long as the model parameters are
linear, we are free to add non-linear (combinations) of the input vari-
ables as predictors in a linear regression model. Polynomial regression
is a particular way to estimate non-linear regression models, where
we add higher degree polynomial terms. For example, in our exam-
ple with a single single variable, formulated as ŷ = w0 +w1x, we
can add the square of the predictor, which would give us the model
ŷ = w0 +w1x+w2x

2. For the estimator, the higher order term x2 is
just another predictor, and the parameters can be estimated as usual.

Figure ?? presents examples of polynomial regression fit to the
data from Figure ??. The curves represent polynomials of order 2 and
7 (as well as the line showing linear, polynomial order 1, regression).
In general, one can use any nonlinear function of the input variables
for fitting a linear regression model. This includes functions involv-
ing combinations of input variables when there are more than one.
For example, if we had two predictors, x1 and x2, a possible nonlin-
ear combination could be x1 × x2. Non-linearity is a concept we will
revisit in more detail later.

1.7 Overfitting

In the polynomial regression examples Figure ??, we see that increas-
ing the order of polynomial increases the model’s fit to the data (as
measured by the R2 on the training set). However, the highest order
polynomial does not follow the general trend, but the peculiarities of
the training set. Intuitively, the second-order polynomial is a better,
more general, fit to this data.

To demonstrate the effect Figure ?? plots the models fit (R2) to the
training set, as well as a test set obtained from the same distribution.
As the degree of the polynomial increases, the fit to the training set
increases (although only slightly after degree 2). However, the fit
to the test set starts decreasing. Even though we demonstrated this
with polynomial regression with different order of polynomials, this
is a general phenomenon called overfitting. As the model complexity
increases (e.g., with inclusion of more predictors, and hence, more
parameters) the chances for overfitting increase. The model starts
learning the noise in the training set more than the generalizations
that are helpful outside the training data.

14 statistical nlp: course notes

14 We will not discuss these metrics of
model selection here, you are recom-
mended to revise some of these met-
rics. A well-known criterion used par-
ticularly in statistics is Akaike informa-
tion criterion.

−4 −2 2 4

5

10

15

w

w2

(w
−
2
)
2
+
2

(w
−

2
)
2
+

2
+

w
2

−4 −2 2 4

5

10

15

w

2w2

(w
−
2
)
2
+
2

(w
−

2
)
2
+

2
+

2
w

2

Figure 1.13: A demonstration of L2
regularization with a single parameter.
The red curve is an arbitrary quadratic
error function ((w− 2)2 + 2), whose
minimum is at 2. The squared weight
(corresponding to squared L2 norm in
one dimension) draw with blue in the
figures is another quadratic function.
The dashed line shows the sum of both
functions. Note that the minimum of
the sum is between the minimums of
the error and the regularization term.
The difference between the two figures
is the regularization strength. The top
figure has λ = 1, while the bottom fig-
ure has λ = 2. Note that the minimum
of the summed objective is closer to 0
with stronger regularization.

1.8 Regularization

As we have already repeated a few times, our aim is not to get the
best results on the training data (for the values of outcome variable
we already know). The aim is to find a general solution that works
for new data instances for which we do not know the value of the
outcome variable. As a result, overfitting is something we have to
avoid. Since overfitting is likely when the model is more complex,
one option is to select models that are simpler – but not simpler
than needed. There are a number of measures that help with model
selection which seek a balance between the success of the model on
the training data and number of parameters.14 However, in ML and
NLP, we often deal with a very large number of parameters, and
the model selection process becomes tedious at best. Here we are
going to discuss a more general technique called regularization for
preventing overfitting.

The idea with regularization is to modify the error function we
minimize such that as well as parameter values that reduce the train-
ing error, we prefer parameter values from a restricted set, which
leads to simpler models. This way, we do not (necessarily) simplify
our models by reducing the number of parameters, but by setting a
preference towards certain parameter values. Instead of minimizing
the error term in Equation ??, we extend the objective function with
a term that prefers smaller weight vectors.

J(w) =
∑
i

(yi − ŷi)
2 + λ‖w‖ (1.6)

where λ is a constant, and ‖w‖ is the L2 norm of the weight vector
(excluding the intercept term).

Equation ?? defines L2 regularization where the estimation pro-
cedure puts a preference towards coefficient vectors with small L2
norms. Figure ?? shows two examples of the error term, the regular-
ization term and their sum. In general, sum of two convex functions
is convex. Since both the training error, and the regularization term
are quadratic functions (hence, convex), the results is also a convex
function. This form of optimization is also well studied, and the solu-
tion to regularized regression can also be calculate analytically. You
should also note in Figure ?? that as we increase the regularization
strength (bottom plot), the minimum of the objective function shifts
more towards the w = 0. L2-regularized regression is also called
ridge regression.

Intuitively, to make the L2 norm of the vector smaller, the estima-
tion procedure will push coefficients that are not strongly supported
by the data to smaller values. In fact, most effects of overfitting result
in very large coefficients, as it requires small changes in the data to
have large effects on the output. As a result regularized estimation
simplifies the model in a ‘soft’ manner, rather than simplifying the
model by explicitly removing predictors. We can also view the reg-
ularization as moving prediction closer to the intercept term (since
we do not regularize it). If coefficients of the predictors are 0, then

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion

machine learning basics 15

15 The L2 regularization also has a neat
parallel with Bayesian estimation with
a Gaussian prior with 0 mean.

w1

w2

s−s

s

−s

training min.

constraint

w1

w2

s−s

s

−s

training min.

constraint

Figure 1.14: Visualization of L1 and L2
regularization. Note that the value of s,
and as a result constraint surface, will
be smaller if λ is larger, requiring a con-
strained minimum closer to 0 and far-
ther from the training minimum.

the prediction of the model is the intercept, which is the mean of the
output variable (if w = 0). So, moving the weight vector closer to
0 moves the predictions closer to the unconditional prediction (the
mean of the outcome variable).15

Equation ?? can also be expressed in terms of constrained opti-
mization. Minimizing J(w) in Equation ?? equivalent finding param-
eter values that minimize the sum of squared errors with subject to
the constraint that the L2 norm of the parameter vector is smaller
than a constant s. That is, we minimize∑

i

(yi − ŷi)
2 with constraint ‖w‖ < s (1.7)

This formulation of the optimization problem is equivalent to Equa-
tion ??, which is generally more convenient to work with. Typically, a
constrained optimization problem is cast as a form similar to Equa-
tion ??. However, the formulation in Equation ?? may help under-
stand the concept better.

Another popular regularization method is L1 regularization, where
instead of the L2 norm, we add the L1 norm of the parameter vector
to the objective to be minimized. L1-regularized regression is also
called lasso. The main difference between the L1 regularization and
the L2 regularization is that the L1 regularization tends to set some of
the coefficients to 0, while the L2 regularization results in small but
non-zero coefficients. A demonstration of this difference is presented
in Figure ??.

The figures depicts the constraints defined (as in Equation ??) by
L1 and L2 regularization as blue regions, and the training objective
as a red concentric circle whose smaller values are represented with
darker shades in a space of two parameters. Constraint space de-
fined by L1 regularization is ‘pointy’ (a square in 2D, a (hyper)cube
in higher dimensions). Hence, as demonstrated in the upper graph,
the minimum value of the training objective that also satisfies the
constraint is likely to coincide with corners of the hypercube, which
will result in the corresponding weight values to be 0. The L2 reg-
ularization constraint defines a hypersphere, which will more likely
to meet with the training objective in point with non-zero parameter
values.

As noted briefly above, λ Equation ?? is a hyperparameter that de-
termines the strength of the regularization. Higher λ values will
result in stronger regularization. With larger values of λ, the estima-
tion procedure will pay more attention to reducing the norm of the
weight vector (or, equivalently the area/volume of the constraint will
be smaller). Lower values will result in more attention to reducing
training error. The optimum value of λ depends on the problem and
the data. As a result it needs to be determined empirically. We will
return to tuning hyperparameters in more detail later. For now, it
is important to note that to determine the best value of λ we need
to leave aside part of the data, often referred to as development set,
or holdout data. In this scenario, we train our model on the training

16 statistical nlp: course notes

w

E(w)

Figure 1.15: A quadratic (convex) func-
tion, and the direction and magnitude
of the derivative of the function with
respect to the parameter (the blue ar-
rows).

X

w1

w2

E
(w

)

w1

w
2

Figure 1.16: A convex error curve in 3D
(top), and the negated gradient vectors
at various points (bottom).

w2

w1

er
ro

r

Figure 1.17: A demonstration of gradi-
ent descent on a convex error function
of two variables.

set multiple times with different λ values, and pick the lambda value
that yields best results on the development set.

1.9 Gradient descent

So far, we worked with models for which we can find the best pa-
rameter values through an analytic (closed form) solution. That is,
we take the derivative of the function with respect to the weights, set
it to 0 and solve the resulting equation(s) to find the minimum point
of the error function. When we have more than one parameters, we
want the gradient vector, the partial derivatives with respect to each
parameter to be 0. Otherwise the procedure is the same.

Although there are analytic solutions for the regression model we
discussed in this lecture (including with L1 and L2 regularization),
there is no known analytic solution for most models we are interested
in. In that case, we apply a search-based strategy to find the values of
the parameters that yield the minimum error. The general procedure
that searches for the minimum of the error function is called the
gradient descent.

The gradient procedure relies on the fact that the gradient of a
function indicate the largest direction of increase on the surface de-
fined by the function. Figure ?? presents a convex error function of
a single variable (parameter) with its negated derivatives. The ar-
rows point to the direction of the minimum of the function, as well
as indicating the steepness of the curve at that point. Both the direc-
tion and the magnitude of the gradient are helpful in estimating a
model’s parameters using gradient descent.

With a single parameter, it is difficult to appreciate the direction of
the descent, since there are only two directions. With more than one
parameter the same idea holds, the gradient vectors and the error
surface will be multi dimensional. Figure ?? presents a similar error
function for two parameters, and the samples of gradient vectors in
the parameter space. The top figure (does not show the gradients)
shows a convex function of two variables. Gradients are shown in
the bottom panel of the figure, you should think about this contour
plot as someone looking down to the 3D are in the upper panel from
the top. Now the projections of the negative gradient vectors on the
two-dimensional weight space makes demonstrates the direction in
the space defined by two parameters. Although we cannot visualize
more than three dimensions, this idea generalizes to higher dimen-
sional spaces (many parameters), which is commonplace in machine
learning applications.

Since the gradient points to the steepest direction of increase, the
main idea with the gradient descent procedure is to follow the in-
verse direction iteratively to reach the minimum. Figure ?? shows a
demonstration of the procedure. Gradient descent starts with setting
the parameter vector to a random value (marked with a red cross in
the figure), and updates the parameter vector iteratively in the op-
posite direction of the gradient, until it riches the minimum point

machine learning basics 17

16 Note that for every step of the pro-
cedure we need to iterate over all the
data set, which may be computationally
expensive for large data sets. In more
complex systems, as we will introduce
later, updates based on smaller parts of
the data generally leads to faster (and
better) solutions.

17 Although we introduce the learning
rate as a constant, it is typical for
more advanced procedures to change
the learning rate during the course of
gradient descent.

Table 1.1: A small data set for demon-
stration of regression. The data is ob-
tained from the true model y = x with
some added random noise.

index x y

1 −1.00 −1.02
2 0.00 −0.15
3 1.00 1.04

where the gradient vector is 0. Since reaching the exact minimum is
highly unlikely, in practice, the search stops when the magnitude of
the gradient is smaller than a small constant.

Formally this is an iterative search procedure where we update
the parameter vectors at each step i according to

wi ← wi−1 − η∇E(wi−1). (1.8)

To make it more concrete, this would translate to

(ai,bi)← (ai−1,bi−1) − η∇
∑
j

(
yj − (ai−1 + bi−1xj)

)2
for simple linear regression.16 In words, we update the parameter
vector (a,b) in the reverse direction of the gradient of the sum of
squared residuals, proportional to the magnitude of the gradient.
This means the gradient descend will take larger steps towards the
minimum if the surface of the error function is steep, and smaller
steps if it is relatively flat, which is likely when we are closer to the
minima for a convex function. The constant η in the above formulas
is called the learning rate.17 It is yet another hyperparameter that
depends on the problem and the data set. If it is set too low, the
procedure will converge slowly, if it is set too high, there is the risk
of overshooting, skipping over the minimum point (possibly back-
and-forth) and not being able to converge.

Gradient descend is an important estimation method used in many
modern machine learning methods. We will return to it, and intro-
duce some of the variations during this course.

1.10 Estimating simple regression: a worked out example

The discussion of estimation procedure above may feel all too ab-
stract, and keeping up with the all the notation and concepts may
be difficult. Now we go through a fully worked-out example, by
estimating a simplified regression model for the small data set in Ta-
ble ??, first analytically, then using gradient descent. For simplicity,
we will assume that we already know that the intercept is 0. This
leaves only a single parameter, the slope to estimate. The regression
equation becomes y = bx.

1.10.1 The analytic solution

To find the best parameter b, we need to find the b value that mini-
mizes the error. Using the least-squares error, the error function is∑

i

(yi − bxi)
2 = (−1+ 1.02b)2︸ ︷︷ ︸

i=1

+(0+ 0.15b)2︸ ︷︷ ︸
i=2

+(1− 1.04b)︸ ︷︷ ︸
i=3

= 2b2 − 4.12b+ 2.15 .

Taking it’s derivative with respect to b, we obtain 4b− 4.12. If we
set 4b− 4.12 = 0 and solve it, we will arrive at the best b value for
least-squares regression, which is 1.03 for this data set.

18 statistical nlp: course notes

2 4

5

10

15

20

1

234 b

E(w)

step b gradient error

1 4 11.88 17.66
2 1.62 2.38 0.73
3 1.15 0.48 0.05
4 1.05 0.10 0.02

Figure 1.18: Demonstration of gradient
descent. The red dots in the figure in-
dicate the points on the error curve for
each step. The table below the figure
lists the step, the b value, its deriva-
tive (gradient) and the value of the error
function explicitly.

Table 1.2: Example one-hot encoding of
five POS tag categories.

POS tag code

Noun 00001

Verb 00010

Adjective 00100

Adverb 01000

Pronoun 10000

1.10.2 Gradient descent

Applying gradient descent to a problem with a closed form solution
does not make much sense. However, we will do it here for the sake
of demonstration. We assume that we can take the derivative of the
error function, as we did above, but we do not know how to analyt-
ically solve the equation after setting the derivative (or gradient in
higher dimensions) of the function. For the gradient descent solu-
tion, we need to set our learning rate and a small threshold at which
we stop iterating.

Figure ?? demonstrates the gradient descent run on our toy prob-
lem. For this demonstration we set the learning rate to 0.2, and stop-
ping criterion as the derivative being smaller than 0.1. At first step,
we initialize the b value ‘randomly’ to 4. The derivative of the error
function at this point is 11.88. We multiply this number with our
learning rate, and subtract the result from the current b value, which
gives us the new b value of 1.62. We continue this process, until the
derivative is close to 0. The other steps are presented in the lower
part of Figure ??. Further iterations would estimate the parameter
better, getting closer to the analytic solution calculated above (1.03).

Note that for the earlier iterations in Figure ??, the absolute value
of the derivative (the magnitude of the gradient vector) is larger.
Hence, we take larger stops towards the minimum. As we get closer
to the minimum, the steps become smaller and smaller, as the mag-
nitude of the gradient decreases alongside the rate of change of the
error function.

1.11 A practical issue: categorical predictors

So far, we assumed that the predictors of the regression model are
numeric variables. In many problems, however, we have non-numeric
predictors, such as part-of-speech tag of a word or the native lan-
guage of a speaker. The most common way to include categorical
variables as predictors is the one-hot or one-of-k encoding, where we
use binary vectors with all values except the index of the category
set to 0. Table ?? shows an example where 5 POS tag categories are
coded using one-hot encoding. After encoding a categorical vari-
able using one-hot encoding, it will be seen as five distinct numeric
(binary) variables by the regression model. That is, each individual
column in of the code in Table ?? will be associated with a regres-
sion coefficient (parameter). In general, a categorical variable with
k distinct values will require k parameters in a regression model.
Note that this representation is exactly the representation we used
for representing categorical random variables in probability theory.
The representation allows uniquely specifying a possible value with-
out committing an ordering between the values. This representation
of categorical variables is not specific to regression, it is also com-
mon to use this representation in other machine learning methods
(e.g., classification).

machine learning basics 19

Summary

This lecture introduced some of the basic concepts in machine learn-
ing alongside an introduction to regression. We will return most of
these topic and expand on them during the coming lectures.

Linear regression is one of the most fundamental topics in statis-
tics and machine learning. As a result there are numerous sources
that you can read more about it. The familiar sources we use in
this class also include introductory chapters or sections on regres-
sion, as well as some of the other concepts briefly introduced here.
hastie2009 discuss introductory bits in chapter 1, and regression on
chapter 3 (sections 3.2 and 3.4 are most relevant to this lecture).
jurafsky2009 has a short section (6.6.1) on regression. All general/in-
troductory books on statistics and machine learning include an intro-
duction to regression (e.g, mackay2003; bishop2006; james2013).

