
1 Deep learning, as it is commonly un-
derstood, is probably more than only
use of neural networks. However,
ANNs are at the center of the methods
that are collectively called deep learn-
ing.

Axon terminal

Axon

Soma

Dendrite

Figure 1.1: A schematic drawing of
a biological neuron (image source:
Wikipedia).

x2

x1

...

xm

w
1

w2

w
m

y

x0 = 1

w
0

Figure 1.2: A schematic representation
of perceptron.

1 Artificial neural networks

Artificial neural networks (ANNs) are powerful machine learning
methods. ANNs have been influential for the development of fields
like computer science, artificial intelligence and cognitive science.
Throughout their history, ANNs enjoyed times of popularity and
times that they were ‘out of fashion’. Currently, we are in one of
their popular times, mainly thorough the methods known as deep
learning.1 In this lecture, we will be discussing some of the basic
concepts on ANNs. We will build on these in later lectures as we
continue studying various methods relevant to NLP.

ANNs are inspired by (networks of) biological neurons. Neurons
(depicted in Figure ??) are the building blocks of biological nervous
systems. In typical operation (with a lot of simplification), a neuron
receives signals from other neurons at its dendrites, at connection
points that are called synapses. Depending on the inputs, a neuron
either ‘fires’ or stays inactive. When it fires, an electrical signal is sent
thorough its axon, which is then passed to the neurons connected to
its axon tendrils. The property of nervous systems that are probably
most relevant for ANNs is that they are made of simple units which
perform a simple computation. However as a whole the system can
perform very complex computations.

For most modern ANNs the connection with biological neurons is
just a point of inspiration. We do not take ANNs as models of animal
neural networks. ANNs are powerful machine learning methods. As
we will soon see, they share a lot with the simple machine learning
methods (with no reference to the biological systems) we discussed
earlier.

1.1 Revisiting perceptron and logistic regression

Historically, perceptron is the precursor of the neural networks. Re-
member that perceptron computes a weighted sum of its inputs,
passes the sum through a step function, and it either fires (output
+1), or does not (output −1). Figure ?? shows a schematic descrip-
tion of this process. In principle, one can build a network of percep-
trons, resulting in more powerful predictors. However, learning in
such a complex networks of perceptrons is not practical. Because of
the fact the step function used as the activation function is not suit-
able for learning in more complex networks. The reason for this has
to do with the fact that the derivative of the step function is 0 almost

Draft lecture notes. Version: db84779@2021-06-13; neural-nets.tex cb

https://en.wikipedia.org/wiki/Neuron


6 statistical nlp: course notes

2 In fact, another way to think about
perceptron algorithm is a (regression)
model with a ‘hinge loss’. However
we will restrict the discussion of ANNs
here to more common architectures and
use cases.

x2

x1

...

xm

w
1

w2

w
m

P(y)

x0 = 1

w
0

Figure 1.3: A schematic representation
of logistic regression.

x2

x10 1

1

−

+

+

−

Figure 1.4: XOR function as a counter
example of linear separability. The in-
puts are x1 and x2, and the label −

used for cases where x1 xor x2 is 0,
and the label + used for cases where
x1 xor x2 is 1.
3 In fact, the fact that perceptron algo-
rithm cannot solve the XOR problem
had been one of the reasons that caused
a (rather unfounded) disappointment
and loss of interest after its first intro-
duction in 1950’s.

Table 1.1: A solution to the XOR prob-
lem by introducing a non-linear basis
function.

x1 x2 x1 +x2 − 2x1x2

0 0 0

0 1 1

1 0 1

1 1 0

0 1

0

1

−

+

+

−

x1

x
2

Figure 1.5: A visualization of the so-
lution in table ??. Note that the dis-
criminant function is discontinuous at
x1 = 0.5.

everywhere. As a result, the gradient cannot guide the steps for im-
proving the loss function. As we discussed earlier, the perceptron is
trained with a custom algorithm.2

We can view logistic regression as a ‘soft’ version of perceptron.
To demonstrate the similarities, Figure ?? demonstrates logistic re-
gression similar to the perceptron in Figure ??. In words, we get a
weighted sum of the inputs, pass the sum through the logistic sig-
moid function and output a numeric value in range (0, 1). Since the
function (and, hence, the prediction error) we use in logistic regres-
sion has non-zero derivative we can use gradient descent to fit the
parameters of the model. In fact, a very common unit used in artifi-
cial neural networks is identical to logistic regression.

Both the perceptron and the logistic regression are linear clas-
sifiers. Although they can solve non-linear classification problems
through use of non-linear basis functions, they can only solve prob-
lems that are linearly separable in their basic form. Before introduc-
ing ANNs, we will first discuss non-linearity.

1.2 Linear separability and non-linearity

Two classes are said to be linearly separable if there is a linear bound-
ary between all instances that belong to different classes. Linear sep-
arability is an important concept in theory of machine learning, and
as we already saw some examples, linearly separable problems tend
to be easier to solve. A simple, prototypical example of linearly non-
separable problem is the logical XOR function (depicted in Figure ??).
Remember that XOR of two logical (binary) variables is true (or 1) if
the values differ, and false (or 0) otherwise. The interesting part for
us is that the XOR problem is a very simple example of a linearly-
non-separable problem. It is impossible to draw a line in Figure ??
that separates the classes (output of the XOR function).3

We already discussed how to turn a linear classifier to a non-linear
one. All we need to do is to introduce appropriate non-linear basis
functions. For example, if we introduce the basis function Φ(x) =

x1x2 as an additional input, we can easily find coefficients of a linear
model that solves the XOR problem. Table ?? shows a solution to
XOR problem with this basis function. The output of the solution
is the XOR value. For perceptron, for example, adding an intercept
of −0.5 would return negative sums for the class represented with
0, and positive sums for the other, allowing perceptron to solve this
problem. If we map the discriminant line (x1 + x2 − 2x1x2 − 0.5 =

0) to the original two dimensional input space, we get a non-linear
discriminant. Figure ?? shows the discriminant line, since the above
solution results in a discontinuous function at x1 = 0.5, we have
two curves in the plot. The result however, is a solution to the XOR
problem.

Another way to look at what we did with adding the basis func-
tion Φ(x) = x1x2 as a predictor to our linear classifier is to map
the original input space (non-linearly) into a 3-dimensional space.



artificial neural networks 7

0

1 0

1

0

1

x1
x2

x
1
x
2

Figure 1.6: Another, three-dimensional,
visualization of the solution in table ??.
Red points mark the positive class
(x1 xor x2 = 1) and blue points mark
the negative class (x1 xor x2 = 1).

x1

x2

x3

x4

yyy

Input Hidden Output

Figure 1.7: A multi-layer perceptron.
4 Unlike perceptron, however, the units
used in modern ANNs have continu-
ous, differentiable activation functions
with non-zero gradients which facilitate
learning.

Where each dimension is the terms in the linear equation. Hence,
as well as the original input x1 and x2, we have another dimension
x1x2. Figure ?? demonstrates this view. Note that in the resulting
3-dimensional space, the classes become linearly separable. The red
and blue dots in the plot can be separated by a plane.

In general, as we also saw with the polynomial regression exam-
ple, a non-linear classification problem can be solved with a linear
classifier non-linear basis functions. The multiplicative function we
used above is not the only example of non-linear basis functions.
There are many non-linear basis function that one can use. In fact,
we will see that we can also solve the XOR problem with the help of
other non-linear functions. However, finding useful but minimal (we
do not want to have too many features, and their associated parame-
ters) non-linear basis functions is not always trivial. Finding/select-
ing correct non-linear basis functions to be used with linear models
is often called feature engineering. We will see that one of the advan-
tages of the neural models is reducing this effort by finding the right
sort of transformations automatically.

Before introducing the neural networks, one last clarification is in
order. We often describe non-linearities with abstract functions. For
the newcomers to the field, however, it is often unclear what does
non-linearity mean in real-world. A common case of non-linearity
is the simply a non-linear relation between the predictors and the
outcome. A common example for this case is the age and various
cognitive abilities, and as a result success in tasks requiring those
abilities. When viewed longitudinally, cognitive abilities increase
during childhood and youth, however later on, they start to decline
with aging. As a result, this so-called U-shaped relation cannot be
expressed with linear models. The second common case is interac-
tion. Linear models treat the effects of the predictors additive. The
effects add up independently of other predictors. There are many
real-world examples where this is not the case. For example, in sen-
timent analysis the word ‘good’ is likely be a good predictor of the
positive sentiment, while the word ‘bad’ would likely to indicate the
negative sentiment. However, when combined with word ‘not’, the
effects reverse. A linear model adding effects of ‘not’ and ‘good’ or
‘bad’, would not be able to model this interaction. The multiplicative
basis functions, like the one in the example above, provide a good
way to handle these type of non-linear interactions.

1.3 Multi-layer perceptron

The simplest neural network architecture is called the multi-layer per-
ceptron (MLP). As the name indicates, the network is built by multi-
ple layers of perceptron-like units.4 Figure ?? depicts an MLP with a
single hidden layer. The information flow in the network is feed for-
ward, the inputs are connected to the hidden layer, the hidden layer
outputs are connected to the output layer. There are no backward
connections, or connections between the units in the same layer. The



8 statistical nlp: course notes

∑
f(·)x2

x1

...

xm

w
1

w2

w
m

y

x0 = 1

w
0

Figure 1.8: A depiction of a single unit
in an artificial neural network.

f(x) =
1

1+ e−x

x

(logistic) sigmoid

f(x) =
e2x − 1

e2x + 1

x

hyperbolic tangent (tanh)

f(x) = max(0,x)

x

rectified linear unit (relu)

Figure 1.9: Common activation func-
tions for neural networks.
5 Not surprisingly the logistic sigmoid
and tanh functions are related:

logistic(x) =
1

2

(
1+ tanh(

x

2
)
)

.

layers are also fully connected: every unit in a layer is connected to
every unit in the next one. The networks we will discuss in this lec-
ture has these two properties. In later lectures we will see networks
with sparse connectivity between the units, and ones that are with
non-feed forward connections.

A single unit in an ANN functions similar to a linear classifier.
The unit’s output is simply a function f(·) of the weighted sum of its
inputs:

y = f

 m∑
j

wjxj

 = f(wx)

The function f(·), called an activation function, is typically a contin-
uous non-linear function. A few examples of common activation
functions used in neural networks are shown in Figure ??.

The first activation function shown in Figure ?? is the now famil-
iar logistic function. The second one is another, s-shaped (sigmoid)
function, hyperbolic tangent (tanh).5 These two functions have been
popular since the early days of neural networks. The last one, recti-
fied linear unit, or ReLU, is a piecewise linear function that became
popular relatively recently. Common to these functions are that they
are differentiable, and have non-zero derivatives (in the range they
are intended to operate). In principle, one can use any differentiable
function as an activation function. However, some activation func-
tions facilitate learning, and those are used more often in practice.

As hinted above, the choice of activation functions is rather flexi-
ble. However, this is true for the hidden layers. On the output layer,
the task we want to solve restricts the choices. Although not exclu-
sive, (logistic) sigmoid is most popular choice of activation function
for binary classification. As you would remember from the logis-
tic regression, this allows us to interpret the output of the model as
the probability of the positive class conditioned on the input. For
multi-class classification, the softmax function we introduced earlier
is a common choice. Remember that softmax is is a generalization of
the logistic function to more than two classes, and defined as,

P(y = k | x) =
ewkx∑
j e

wjx
.

Note that the equation above means that we have one output unit for
each class label. The expression in the denominator makes sure that
the outputs of all units sum to one.

Although we will mostly discuss neural networks in the context of
classification, they can also be used for regression problems. In this
case, we typically use the identity function f(x) = x as the activation
function. The hidden layers still help finding a non-linear solution
(or intermediate representation that maps the non-linear problem to
a linearly-solvable one). We can view the final output layer (which
simply outputs a weighted sum of its input without any non-linear
activation function) as scaling the internal representations built by
the network to the correct scale/unit of the output variable.



artificial neural networks 9

x1

x2

h1

h2

y1

y2

f() g()

w11

w
12

w
21

w22

v11

v 2
1

v
12

v22

Figure 1.10: A simple multi-layer per-
ceptron. f(·) and g(·) are the activa-
tion functions used in hidden and the
output layers respectively. For the sake
of simplicity, we do not have an inter-
cept (bias term) in this model.

x1 h1

y

x2 h2

f(z) = z2

g(z) = 1
1+e−z

1 1

−
2

0

−
3

1

1

1

1

1

1

Figure 1.11: An MLP for solving the
XOR problem. The inputs at the bottom
that are always 1 are intercept terms.

1.4 Forward propagation in neural networks

We now are ready to fully define the output of a feed-forward net-
work. We will do this through the simple example presented in Fig-
ure ??. This network has two predictors and two output variables
to predict. The activation function choices of the hidden units is
rather flexible, one can choose any activation function that makes
sense for a particular problem. However, as noted earlier, the choice
is generally made among a set of well-known, well-tested activation
functions in practice. The activation functions for the output units
are based on the type of problem solved by the neural network.

To calculate the output values, it is generally more convenient,
and easy to understand, to break down the computations involved
into pieces. In this network, we first calculate the weighted sum of
the input variables for each hidden unit, and apply the activation
function f(·). Then, the units in the output layer takes the output of
the hidden layer, compute the weighted sum, and apply the output
activation function g(·). More formally,

hj = f

(∑
i

wijxi

)
and yk = g

∑
j

vjkhj

 .

Note that the input to the activation functions are simply dot prod-
ucts of input vectors and the corresponding weight vectors. If we
write the weights for each layer as matrices,

W =

[
w11 w12

w21 w22

]
and V =

[
v11 v12

v21 v22

]

we can simplify our notation with,

h = f(WTx) = f(xTW) and y = g(VTh) = g(hTV)

where, following the convention, we consider input and hidden vec-
tors as column vectors. What is important to realize here is that, the
network computes a series of matrix-vector products, followed by
element-wise application of the activation functions. Viewing inputs
and outputs of each layer as vectors, function of each layer is per-
forming a (non-linear) transformation of its input. Putting the above
together,

y = g
(
f(xTW)V

)
.

It is also important to realize each layer in a feed-forward network
implements a function, and the function implemented by the com-
plete network can be represented by the composition of the functions
at each layer.

To make this discussion more concrete, we will go through a sim-
ple example, that intends to solve the XOR problem. The network
is schematically described in Figure ??. For the sake of example, the
weights (marked on the edges) are determined manually. Normally,



10 statistical nlp: course notes

Table 1.2: The solution for the XOR
problem using the network in Figure ??.

x1 x2 h1 h2 y

0 0 4 0 0.27
0 1 1 1 0.73
1 0 1 1 0.73
1 1 0 4 0.27

x2

x1−

0

+1

+

1

−

h2

h1
0

−

4

++

−4

Figure 1.12: A demonstration of the
transformation computed by the hid-
den layer of the network presented in
Figure ??.

x1 h1

y

x2 h2

a

b

c

d

e

f

Figure 1.13: A simple network for
demonstrating the need for non-linear
activation. Without non-linear activa-
tion functions the output of the network
is y = (ea+ fb)x1 +(ec+ fd)x2, a
linear transformation of the input vari-
ables.

we want to learn these weights. Since we have a binary classification
problem, we use the logistic sigmoid activation at the output units.
For the hidden layer, we use square function as activation, which is
unusual in real applications, but makes manual calculations easier.

Now, we go through calculations of input vector (0, 1) explicitly.

h1 = f(1× x1 + 1× x2 − 2) = (0+ 1− 2)2 = 1

h2 = f(1× x1 + 1× x2 + 0) = (0+ 1+ 0)2 = 1

y = g(1× h1 + 1× h2 − 3) =
1

1+ e1
= 0.73

The output of the network for the other possible input combinations
can be calculated similarly. Remembering that the operation above
can be performed by matrix-vector product, we also can write down
our weight matrix, and multiply with the input matrix.

h = f

[1 x1 x2

]
×

−2 0

1 1

1 1




y = g

[1 h1 h2

]
×

−31
1




We do not explicitly calculate the rest of the input values we are
interested, but we give the network’s output, including the values
at the hidden layer, for all relevant values for the XOR problem in
Table ??. Note that the output of the network for inputs (0, 1) and
(1, 0) is above 0.5. As a result we classify these values as belonging
to the positive class, and since the other two input are below 0.5 they
are assigned to the negative class.

Another interesting observation with the solution is presented in
Figure ??. The upper panel plots the XOR problem in the original
input space similar to Figure ??. The lower panel shows how these
points are transformed by the hidden layer. The points that repre-
sent different classes on the lower panel are linearly separable. As
a result, the output layer, which is simply a binary logistic regres-
sion classifier can find a solution. The transformation performed by
the hidden layer turns a problem that is not linearly separable into a
linearly separable one.

Note that the reason the hidden layer can transform a non-linearly-
separable problem into a linearly separable one is the fact that it uses
a non-linear activation function. Without the non-linear activation,
regardless of the depth of the network, what the network computes
is a series of matrix–vector multiplications, in other words, linear
transformations. As demonstrated in Figure ??, without non-linear
activation functions, the result is yet another linear transformation.



artificial neural networks 11

−20
0

20 −20

0

202

4

6

global min.
local min.

local max.
saddle point

w1

w2

E
(w

)

Figure 1.14: A demonstration of multi-
ple minima with two parameters.
6 In fact, second derivative of a
quadratic function is a constant. As
a result, it evaluates the same value
everywhere. If the coefficient of the
quadratic term is positive, the second
derivative is positive, and hence the
function is convex. If, on the other
hand, the coefficient of the quadratic
term is negative, the second derivative
is negative, and the function is concave
(having a single maximum).
7 The details of the procedure is not im-
portant for this applied, introductory
introduction. Important thing to realize
is that the gradient alone is not enough
determining whether the gradient de-
scent finds a minimum or not. We need
to work harder to determine this auto-
matically.

Here is a bit of detail you can skip if
the terms are unfamiliar: The cells of
the Hessian is composed of second par-

tial derivatives where Hij =
∂2J(w)
∂wi∂wj

.
If the Hessian is positive definite, then
the stationary point is a minimum. If
the Hessian is positive semidefinite,
then the stationary point is either a min-
imum or a saddle point. In other cases
(indefinite of negative (semi)definite),
the stationary point is either a maxi-
mum or a saddle point.

x1 h1

y

x2 h2

a

b

c

d

e

f

Figure 1.15: A simple neural network
for demonstrating the propagation of
error. In a single layer network (without
hidden layer) the error would be due to
weight e or f. For the network above,
the error at output node y need to dis-
tributed to the weights marked in red
and blue.

1.5 Learning in neural networks

Like the earlier methods we discussed, learning in ANNs is achieved
thorough minimizing an error function. The choice of exact error
function is related to the task and the network architecture. In gen-
eral, the minimum of the neural network error functions cannot be
found using analytic solutions (as in regression). As a result, we need
to employ a search strategy like gradient descent, to find the minimum
of the error function. We have already seen models whose minimum
error can be found using gradient descent. As long as the error func-
tion is convex, gradient descent can find the global minimum of the
error function. The problem we face with neural networks is that the
error functions are not necessarily convex. There may be multiple
minima as demonstrated in Figure ??. Although we want to find the
global minimum, gradient descent is not guaranteed to find it. It may
stop in one of the local minima. Some training procedures may help
avoiding local minima. However, there is no general solution to find
the global minimum of an ANN error function.

We have already discussed the gradient descent in the context of
convex objective functions. If the objective is known to be convex,
the point where gradient is 0 is guaranteed to be the global mini-
mum. When we have a non-convex function with minima, maxima
and saddle points as presented in Figure ??, we have an additional
complexity. Gradient is 0 in any of these ‘critical points’. To make
sure that we are at a minimum rather than another type of critical
point, we refer to the second derivatives. Considering a quadratic
error function for ease of demonstration, the first derivatives of both
(w− 2)2 and (2−w)2 are 0 at 2. However, only (w− 2)2 has a pos-
itive second derivative at this point.6 With multiple optimization
variables w, the result is not a scalar, but a matrix of second deriva-
tives known as the Hessian matrix. Once the gradient descent finds
an optimum point, one can evaluate the Hessian matrix to determine
whether the stationary point found is a minimum point or not.7

1.5.1 Backpropagation

Another issue about learning in neural networks arises because of
the layered architecture of the system that makes learning in ANNs
more challenging. It is computationally non-trivial to assign credit
or blame to the weights of the non-final layers. We will discuss the
solution and the problem through the simple example we presented
earlier, which is repeated with slight modification in Figure ??. The
figure indicates two possible paths in the network that may have
caused the error on output unit y with two different colors. If we
had a single layer, gradient descend would update the weights e
and f based on their partial derivatives (the steepness of the error
function in the corresponding dimension). Since we do not have
direct notion of error in the hidden layer, we need a mechanism to
determine how to distribute the responsibility for error.



12 statistical nlp: course notes

8 In general, derivative of a function
F(x) = f(g(x)) is calculated using the
chain rule of derivatives:

F ′(x) = f ′(g(x))g ′(x)

As noted above, we want to essentially use gradient descent, which
means we need the gradient of the error with respect to the weights.
We will go through a (very) simplified example based on the net-
work in Figure ??. For the sake of demonstration, we will assume
that we are minimizing y (normally we minimize the error which
is a function of y, but we will soon see that the principles apply to
more realistic cases as well). The gradient of the whole network is
the vector

∇y =

(
∂y

∂a
,
∂y

∂b
,
∂y

∂c
,
∂y

∂d
,
∂y

∂e
,
∂y

∂f

)
that is, the partial derivatives of the network with respect to each
weight. For the sake of demonstration we will calculate the partial
derivatives with respect to e, a and c, with some heavy simplifica-
tion. Partial derivative ∂y

∂e can be calculated in a rather straightfor-
ward way for a differentiable function. All other parts of the network
are constant terms with respect to e.

Calculation of the partial derivatives with respect to a and c is
slightly more involved, as h1 is a function of these variables. How-
ever, we can simply apply the chain rule of derivatives8

∂y

∂a
=
∂y

∂h1

∂h1
∂a

and
∂y

∂c
=
∂y

∂h1

∂h1
∂c

. (1.1)

The main point here is that we can calculate the partial derivative
with respect to any of the weights. If our networks gets deeper, the
terms for the earlier weights will have more terms due to repeated
application of the chain rule, and due to the fact that in our rep-
resentation above each layer implements two pieces of computation
(a linear mapping followed by application of the activation function).
Hence, once we factor these in, we will have more terms in the partial
derivation calculations in Equation ?? even for our simple network
above. Furthermore, we can consider the error function as a final
node, taking the output of the network, and calculating the error,
which means the above notion of calculating gradient works. In fact,
this will work for any computation graph without cycles.

So far, what we did was just math, telling us a we can calculate
the gradient for a feed-forward network. However, you should note
that the term ∂y

∂h1
in Equation ?? is required for calculating the par-

tial derivatives with respect to both a and c. Repeated calculation
of same the same quantities makes a naive attempt to implement the
above procedure computationally very inefficient. Making it impos-
sible to use in most modern neural networks which include thou-
sands, if not millions, of parameters. Also note that we typically
calculate the error on a large number of inputs with many dimen-
sions, which makes the problem require even more computational
resources.

The solution to this problem is called the backpropagation algo-
rithm. The idea is similar to many dynamic programming algo-
rithms. The backpropagation algorithm simply stores the quantities
like ∂y

∂h1
above and avoids recalculating them.



artificial neural networks 13

w2

w1

er
ro

r

Figure 1.16: A demonstration of the
paths taken by gradient descent (blue)
and stochastic gradient descent (red) on
a (hypothetical) error surface.

1.5.2 Stochastic and mini-batch gradient descent

In typical gradient descent learning, the gradient is calculated using
the complete training data. However, with large training sets this
is computationally inefficient. Together with large number of pa-
rameters, the space complexity (required memory) may become an
important issue.

There is a well-known, memory-efficient variant, stochastic gradi-
ent descent, which updates weights for every single training instance.
Since the stochastic gradient descent changes the weights for every
single training instance, it is noisy, it may sometimes take steps in
the opposite direction of the minimum. However, in the long run, it
is will converge to the same minimum for a convex function. How-
ever, as we will note soon, the convergence may not be to the same
minimum in case there are multiple minima.

Figure ?? demonstrates the possible paths taken by gradient de-
scent and the stochastic gradient descent on an error surface defined
on two parameters. Since the error surface is a function of the whole
input data, the gradient descent will take sure steps toward the min-
imum with fewer steps. The stochastic version will wander around
the error surface more since the gradient is calculated only based
on a single input, and likely to take many more steps. However,
stochastic gradient descent will also require fewer calculations and
less memory at every step.

In practice, it is more common to use a mini batch update strategy
that is a compromise between full gradient descent and the stochastic
version. Mini batches are computationally more attractive, they both
fit into memory and can also be computed much faster on vector
processing hardware such as graphical processing units (GPUs) in
comparison to stochastic gradient descent.

Furthermore, it turns out the batch size is an important parame-
ter in many cases. The choice of batch size affects the outcome of
training a neural network, and often large batch sizes may be non-
optimal. This effect is likely due to the fact that (full) batch gradient
descent converges to the closest minimum with sure steps even if
it is a rather ‘shallow’ local minima. On the other hand stochastic
or mini-batch version may skip over the minor ‘bumps’ in the er-
ror surface, eventually finding a better (local) minimum on the error
surface.

1.5.3 Countermeasures for overfitting

As in any machine learning model, ANNs can also overfit. They
may be even more prone to overfitting due to their complexity in
comparison to, e.g., linear classifiers. As in linear models, one way
to counteract overfitting is regularization. One can apply L1 or L2

regularization to ANNs, by adding L1 or L2 norm of the weights to
the error function.

Another popular method to prevent overfitting is dropout, where a
randomly chosen input and/or hidden unit in the network is ‘turned



14 statistical nlp: course notes

9 The probability with which the out-
puts are dropped is another hyperpa-
rameter.

10 Just to list a few typical ones: number
of layers, number of units at each layer,
activation functions at each layer, reg-
ularization method and its parameters,
number of epochs to train the network,
weight initialization, batch size, learn-
ing rate, (adaptive) learning method
and its parameters . . .

off’ during training, by setting their (output) value to 0. A layer fol-
lowing dropout has access to only a subset of its input selected ran-
domly for each input instance.9 As a result the network is forced to
learn from partial information. Dropout is known to reduce overfit-
ting. It is also seen as learning an ensemble of multiple classifiers,
each operating on a subset of features. It is a technique that is com-
monly used in practice.

Another method of preventing overfitting is early stopping. The
idea with early stopping is to monitor the loss on a validation set
at every epoch (or some other interval like every batch update), and
stop when the validation error starts increasing.

The above is not the exclusive listing of the possibilities, and use
of one of these methods does not prevent the use of the others. A
combination of the three methods discussed above (and others) can
also be used within the same network architecture.

1.5.4 Some tricks of the trade

Non-convex error functions (multiple minima) mean that gradient
descent will not necessarily find the global minimum while training
neural networks. Furthermore, the large number of possible vari-
ations of architecture and hyperparameters10 make neural network
training often more involved than traditional (linear) models. Al-
though, their renewed popularity made it easier (through common
practices, higher-level libraries with better default behavior), train-
ing neural networks well, particularly the networks beyond simple
ones, require a substantial amount of (hands-on) experience. How
to train neural networks properly and efficiently is an active area of
research, and often theory and understanding lags behind some es-
tablished practices. Here, we try to point out some of the common
practical issues.

One common alternation to gradient descent while training neural
networks is to add momentum. Even though the mini-batch training
is useful, and used in practice almost exclusively, smaller batch sizes
may also cause jumps at every step of gradient descent as demon-
strated in Figure ??. To make sure that the mini-batch methods fol-
low a more straight course towards the minimum, one can add the
previous gradient (or an average of previous gradients). With the
momentum, gradient descent updates become, for example,

∆wij(t) = η
∂E

∂wij
+α∆wij(t− 1)

where η is the usual learning rate, and α is another hyperparameter
determining the strength of the momentum. Intuitively, momentum
cause a larger update if the current gradient is in the direction of the
previous gradient(s), otherwise it will change its course towards the
earlier course of the descent.

Another important factor in neural network training is the learn-
ing rate. Typically we want to start with higher learning rate, and
reduce it as the learning progresses. Simple algorithms that ‘decay’



artificial neural networks 15

11 Just to name a few: Adagrad,
Adadelta, RMSprop, Adam, . . .

12 For example, the weights can be
scaled by 1000 during learning if one
provides a length feature in millimeters
instead of meters.

13 Note that some activation functions,
e.g., tanh, already output scaled val-
ues, but others, e.g., relu, may output
widely varied scales.

the learning rate (e.g. linearly or exponentially) based on the num-
ber of iterations are often used in practice. However, there are quite
a few adaptive algorithms which set the learning (and possibly other
parameters such as the momentum parameter we discussed above)
in a smart way. We will not go into details of each of these optimiza-
tion algorithms, but note that there are quite a few of them and most
machine learning libraries or platforms offer out-of-the-box imple-
mentations.11 For most ANN practitioners, using one of these algo-
rithms is often more practical (for both finding a good minimum and
for finding it quickly) than custom adaptions.

Although a neural network can work with input with any scale,12

normalization of the input variables are often helpful in practice
(mostly because of the defaults implemented ANN software, but var-
ied input scales may also cause numerical instabilities). As a result,
it is generally a good idea to normalize the input variables, and in
some cases output of some layers before feeding them to the next
layer.13

Summary

This lecture is a first (gentle) introduction to ANNs. The later lectures
will cover some (more complex) ANN architectures used in practice.

With the popularity of deep learning, many (online / free) tutori-
als and books on neural networks became available. For general and
more comprehensive/technical introductions to ANNs, the readers
are referred to usual textbooks in the field (hastie2009; mackay2003;
bishop2006). For a more NLP-oriented discussion, the third edi-
tion of jurafsky2009 includes a chapter on neural networks, and
goldberg2016 includes a survey of the use of various ANN architec-
tures in NLP along with an introduction (there is also a recent book,
goldberg2017, with a similar content). Most of these textbooks are
good references for the foundational topics surveyed in this lecture.
However, this is an active area of research with frequent changes to
common methods and architectures, and it is often difficult for more
reliable sources of information (like books) to be up to date.


