
1 Unsupervised machine learning

Unsupervised learning refers to a set of machine learning methods
that do not require labeled examples. Unlike in supervised learn-
ing, there is no correct or incorrect solution. The motivation to is to
find some structure in the data. As a result, the unsupervised meth-
ods are often used for exploratory methods for discovering structure
in a given data set. Unsupervised methods may also be used as a
substitute for their supervised counterparts when no labeled data is
available, or to supplement supervised methods in case labeled data
is small and unlabeled data is abundant. Considering the cost of
creating labeled (annotated) data, unsupervised methods are attrac-
tive. However, unsurprisingly, they are rarely as accurate as their
supervised counterparts.

Since we do not have labels, unsupervised learning by itself is an
ill-defined problem. We do not have a ‘ground truth’. As a result,
measuring success difficult. The question is, then, what drives learn-
ing in an unsupervised method? The short answer is the similarity
or differences of the objects of interest. The way we define similarity
or differences between the objects of interest is important, and it is
the way we can affect the ‘learning’ of an unsupervised method.

Traditional unsupervised methods include, clustering, dimensional-
ity reduction, and density estimation. Clustering aims to group the data
into sensible clusters. Dimensionality reduction aims at reducing the
redundancy in the data such that a small number of informative di-
mensions are retained. Density estimation assumes that the data
at hand is sampled from a number of groups whose members are
distributed according to some probability distributions. The aim is,
then, to characterize the underlying distributions, with which we can
determine the likelihood of each data point coming from one of the
distributions estimated from the data.

Another way of looking at the unsupervised methods is as proba-
bilistic models with latent (hidden or unobserved) variables. In fact,
all of the classical methods introduced in this chapter can be viewed
as different instantiations of probabilistic models. For the remainder
of this chapter, we will go through the classical methods listed above.

1.1 Clustering

Clustering aims to solve a problem similar to classification. Both
methods assign the objects of interest into a number of groups. How-
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Figure 1.1: An example data set in R2

for clustering. Note that unlike classifi-
cation data (e.g., in Figure ??), the data
points do not have associated labels.
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Figure 1.2: A likely clustering of the
data in Figure ??, into three clusters.
In fact, the data is sampled from three
bivariate normal distributions with dif-
ferent means, and the labeling indicates
the original clusters (distributions).
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Figure 1.3: Visualization of Euclidean
(solid blue line) and Manhattan (dot-
ted orange path) between two vectors
a and b in R2.

ever, in case of clustering, we do not know the true group labels.
What we hope to do is to discover is ‘natural groupings’ of the ob-
jects in our data set.

Figure ?? shows an example data set for clustering. Note that un-
like in classification, the data points do not have labels. Humans
are often good at clustering two (and maybe three) dimensional data
similar to the one presented in Figure ??. For the data in Figure ??,
most people are likely to suggest a clustering similar to the one pre-
sented in Figure ??. However, most real world problems require
dealing with (very) high-dimensional feature spaces, and it is diffi-
cult for humans to visualize and cluster data expressed in feature
spaces larger than 3 dimensions.

Example uses of clustering in CL include clustering languages or
dialects for determining their relationships; clustering texts to dis-
cover authorship or topics; clustering words in such a way that se-
mantically similar words fall into the same cluster.

In this chapter, we will discuss a few common methods used for
clustering. Before introducing the methods, however, we first discuss
formalizing similarity or distances between two objects and some
other related concepts which are crucial for any of the methods we
will discuss below.

1.1.1 Similarity and distance

Since we do not have real labels for each item, we rely on a distance
(or similarity) measure in all clustering methods. If the objects of
interest are expressed as feature vectors in Rn, we can use one of
the well-known distance measures. Typical choices include the Eu-
clidean distance and Manhattan distance. Euclidean distance between
two vectors is the L2 norm of their difference.

‖a−b‖ =

√√√√
k∑
i=1

(ai − bi)2

where, a and b are d-dimensional vectors. The Manhattan (or taxi-
cab) distance between two feature vectors is the L1 norm of their
difference.

‖a−b‖1 =

k∑
i=1

|ai − bi|

These are only two well-known distance measures defined on Eu-
clidean (feature) space. Choice of distance measure (besides the
choice of features) depends on the application. Different distance
measures lead to different clusters.

Some clustering algorithms only operate on distances. For these
algorithms, we do not even need the explicit features. Distance mea-
sures can also be defined on objects without explicit definition of
real-valued feature vectors. In linguistic applications it is common
to define distance metrics over stings (e.g., words) and trees (e.g.,
syntactic representations) directly.
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Figure 1.4: Two example clusters (one
shown as blue triangles, the other with
orange dots), and their within-cluster
(above) and between cluster (below)
distances.

1 We will get back to the choice of num-
ber of clusters later.

Formally, a distance metric D has to satisfy the following three
properties:

1. D(a,b) = D(b,a) (symmetry)

2. D(a,b) > 0 for all a, b (non-negativity)

3. D(a,b) +D(b, c) > D(a, c) (triangle inequality)

Once a distance measure is defined on the objects of interest, a
natural approach to clustering is minimizing the within-cluster scatter,
which is defined as

K∑
k=1

∑
a∈Ck

∑
b∈Ck

D(a,b)

where K is the number of clusters and Ck represents the set of data
points that belong to the cluster k. Within cluster scatter measures
the total distance between all data points which share the cluster
assignment. A related measure is the between cluster scatter, which is
the sum of all distances between all data points that are not assigned
to the same cluster. Formally, Between cluster scatter is defined as

K∑
k=1

∑
a∈Ck

∑
b 6∈Ck

D(a,b).

Between- and within-cluster scatter are visualized in Figure ?? using
Euclidean distances on a 2-dimensional feature space (R2).

Intuitively, we want the data points that belong to the same cluster
to be closer to each other, while the clusters to be farther from each
other. As a result, minimizing within-cluster scatter, and maximizing
between-cluster scatter makes sense. You may have already noticed
that minimizing one also means maximizing the other. They sum up
to the total scatter in the data set, which is constant for a given data
set. Hence, by minimizing within-cluster scatter, we automatically
maximize the between-cluster scatter.

There are two problems with a direct approach to minimizing
within-cluster scatter for obtaining the best clustering configuration
for a given data set. First, the lowest within-cluster scatter is obtained
when each data point forms its own cluster. As a result, without a
predefined number K of clusters, the optimum solution (which puts
each data point in its own cluster) is not useful.1

The second problem is computational complexity. Enumerating
all possible clustering configurations, and finding the configuration
with the lowest within-cluster scatter is intractable for most realistic
data sets.

Given the high computational complexity, all practical clustering
methods opt for an approximate solution. There are two major ap-
proaches to clustering. One approach is to divide the features space
into areas for each cluster. The other is to organize the objects hi-
erarchically such that items that are most similar to each other are
grouped together, and repeating the process recursively to obtain a
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2 Where, d is the dimension of the fea-
ture vectors.

3 K-means algorithm is related to the
expectation-maximization algorithm that
we will discuss later in this lecture.

hierarchical grouping. We will discuss the k-means as an example of
the non-hierarchical clustering method, and hierarchical clustering
in the remainder of this section.

1.1.2 K-means

The k-means algorithm is a simple but effective clustering algorithm.
The algorithm requires real-valued feature vectors in Rd as its in-
put.2 The number of clusters, K, is specified in advance. The algo-
rithm finds the centroids (the mid-point of a set of data points in Rd)
of each proposed cluster. A new data point is assigned to the cluster
with the closest centroid.

The k-means algorithm is an iterative algorithm. An informal de-
scription of the algorithm is given below.3

1. Randomly choose centroids, m1, . . . ,mK, representing K clusters

2. Repeat until convergence

(a) Assign each data point to the cluster of the nearest centroid

(b) Re-calculate the centroid locations based on the assignments

Typically, the algorithm terminates (converges) when no cluster
re-assignments are done in step 2a, or the centroids does not change
in two successive iterations. Both criteria can be ‘softened’ by al-
lowing a small threshold for the relevant difference to prevent long
convergence times.

The k-means algorithm finds a local minimum of the sum of squared
Euclidean distance between the cluster center and points assigned to
the cluster within each cluster

K∑
k=1

∑
x∈Ck

‖x− µk‖2 (1.1)

where K is the number of clusters, and µk is the centroid (the mean
vector) for the instances that belongs to cluster k. Note the resem-
blance of the inner sum to formulation of the variance from Sec-
tion ??. Effectively, we are looking for clusters with minimum vari-
ance. Furthermore, minimizing the distances of points in a cluster
from their mean will also minimize the within-cluster scatter, dis-
tances between the data points within the same cluster. It should
again be stressed that the k-means finds a local minimum, since the
above objective is non-convex.

Figure ?? presents a demonstration of the k-means algorithm on
the data set we have seen earlier in Figure ?? and ??. Note that the
algorithm starts with a random initialization of cluster centroids, as
shown in the upper left panel of Figure ??. The initialization af-
fects the final outcome, different initializations may result in find-
ing different cluster configurations. A way to select a good solution
initialization is to run the algorithm multiple times with different
initializations, and pick the solution with the lowest squared error.
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Figure 1.5: Demonstration of the k-
means algorithm on the data presented
in Figure ??. The solid marks on the
graphs represents the data points, and
large shapes represents the centroids of
the clusters shown with the same shape
and color. The first row corresponds to
the step (a) in the algorithm, the second
row corresponds to the step (b). Each
column represents an iteration, where
the first column shows the random ini-
tialization of the centroids, followed by
the first cluster assignments.
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Figure 1.6: The scree plot for the data
set in Figure ??. The graph shows
squared error (Equation ??) after k-
means algorithm has converged for K
values between 1 and 10.

Rather than randomly initializing the centroids as in our example,
there are also ‘more informed’ methods to assign initial cluster cen-
troids. However, there is no single initialization method that works
best in all applications.

As seen in Figure ??, by successive assignment of the points to
the clusters, and re-computing the cluster centroids, the algorithm
converges to the intuitive solution in Figure ??. The steps after the
fourth iteration (not shown in the figure) does not change the cluster
assignments. Note, however, the cluster labels (the shapes of the data
points in the figure) do not match with the earlier ‘gold-standard’
labels in Figure ?? since the labels are assigned arbitrarily. A different
run of the algorithm may produce the same solution with different
label assignments. Although this is obvious and expected from an
unsupervised method, it is worth to note as it affects the evaluation
metrics one can use for clustering methods.

One final note on the example in Figure ?? is that the type of
data here is almost ideal for the k-means algorithm. K-means is
known to perform well when clusters with approximately round-
shaped (hyperspherical) and equal-sized clusters.

The k-means algorithm requires the number of clusters K to be
specified in advance. For some problems this is not much of an
issue, as the number of clusters is known (for example, clustering
news articles into a fixed set of topics). However, in many others the
best K is not obvious. K-means objective (or within-cluster scatter)
does not help us here since the objective function is minimum when
K is equal to the number of data points. A helpful method is to run
the clustering multiple times with increasing K, and choose the point
where the objective stops improving drastically. Figure ?? shows a
plot, known as the scree plot, where the values of the objective is
plotted against the number of clusters. The reduction of the error
function improves significantly until K = 3, after which improvement
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is very small compared to earlier steps. Although it may not be as
clear as in Figure ?? in real data sets, the point that the error line
forms an ‘elbow’ in a scree plot is an indication of a good K value.

The k-means algorithm we describe in this section is used in many
fields. It also has a large number of variations. One variation that
is worth mentioning here is the k-medoids algorithm, which reduces
the within-cluster distances between the data points and the cluster
medoid, rather than cluster centroid. The cluster medoid, analogous
to median, is always one of the data points, whose average distance to
the other points in the cluster is minimal. One of the advantages of
k-medoids is that it can use any distance function (unlike Euclidean
distance used by k-means). However, it is computationally more
expensive than k-means, and as a result, it is not as popular.

1.1.3 Hierarchical clustering
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Figure 1.7: Example dendrogram (left)
produced by hierarchical clustering of
the points on the left pane. The data
is the one we have used in demonstra-
tion of k-means (first introduced in Fig-
ure ??). We use the colors to represent
‘true’ clusters in the scatter plot on the
right panel (we know the true clusters
since data is artificially generated). The
colors on the dendrogram reflect the 3-
way clustering suggested by the den-
drogram. We use numeric ids for cross-
referencing the data in two-dimensional
feature space and the dendrogram. The
dendrogram is obtained by hierarchi-
cal agglomerative clustering using Eu-
clidean distances, and complete link-
age.

The k-means clustering discussed above forms groups in a ‘flat’
manner. Another approach to clustering is based on forming a hier-
archical organization, such that the objects that are very similar are
linked at a lower level and the objects (or clusters) with lower simi-
larities. The resulting hierarchy is most commonly shown as a tree
called dendrogram as in the left panel of Figure ??. A dendrogram
shows the cluster hierarchy, and the height at which two items or
clusters merge shows the distance between them.

The clusters are determined by cutting ‘cutting’ the dendrogram
at a particular height. For examples, cutting the dendrogram in Fig-
ure ?? at height 3.5would yield two clusters, while cutting it at height
2.5 would yield a clustering close to the original three-clusters solu-
tion shown in the right panel of Figure ??. You are recommended to
study this figure carefully.

The hierarchical clustering can be bottom up, starting with each
data point assigned to its own cluster, and merging the most-similar
ones to obtain larger clusters at each step. This type of clustering is
called agglomerative clustering. The other obvious method of hierar-
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Figure 1.8: Step-by-step demonstration
of agglomerative clustering. Each row
shows a successive step in the proce-
dure. The right side shows the dendro-
gram at each step, while the left side
shows the data points in R2 alongside
the clusters formed at each step.

1 2 3 4
1
2 2.00
3 1.41 1.41
4 3.61 2.24 2.24
5 4.24 3.16 2.83 1.00

Figure 1.9: The distance matrix used
as input to the demonstration in Fig-
ure ?? (using Euclidean distances). We
do not need to specify the upper trian-
gular part as the matrix is symmetric,
and the diagonal entries are all 0.

chical clustering, divisive clustering, starts with a single cluster con-
taining all data points, and splits the clusters until each data point
is in its own cluster. The optimum solution, considering all possi-
ble splits/merges, is intractable for both divisive and agglomerative
clustering. As a result, the methods used in practice are greedy meth-
ods that often find a good solution, rather than the best solution.
The methods known for agglomerative clustering are computation-
ally more efficient and they are more popular.

A typical agglomerative clustering algorithm can be described as
follows:

1. Compute the similarity/distance matrix

2. Assign each data point to its own cluster

3. Repeat until no clusters left to merge

• Pick two clusters that are most similar to each other

• Merge them into a single cluster

Figure ?? shows a step-by-step demonstration of agglomerative
clustering of five points in two-dimensional Euclidean space. We
start with assigning each point to its own cluster. Then we find the
closest two points, which turns out to be the data points labeled 4
and 5, then we go on merging 2 and 3, then merge 1 with the clus-
ter formed by 2 and 3, and finally merge remaining two clusters
together. It is also important to note that most hierarchical cluster-
ing algorithms operate on a distance matrix, rather than the feature
vectors. This is sometimes convenient when there is a well-known
distance function that does not depend on explicit features, such as
Levenshtein distance between two strings. Since a distance matrix is
symmetric (more specifically, positive semidefinite) with all 0 values
at the main diagonal, the algorithm only uses part of it, typically a
lower triangular matrix as in Figure ??.

We discussed various options for distance measures between two
objects. However, note that determining the distance between a clus-
ter and a data point (step 3 of Figure ??), and determining the dis-
tance between two clusters (step 4 of Figure ??) are non-trivial deci-
sions.

There is a relatively large number of choices for measuring inter-
cluster distances. The choice affects the computational complexity as
well as the final clustering yielded by the clustering algorithm. The
methods of measuring the distances between the clusters are known
as linkage methods in the literature. The common linkage methods
include the following.

Single linkage uses the minimal distance between two clusters as
their distance. This method is related to the minimum spanning
tree algorithm, and tends to form long linkage of ‘thin’ clusters.
Successively linked objects are closer to each other. However, ob-
jects at the opposite ends of the link may be farther apart from
each other compared to the objects in other clusters.
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Figure 1.10: Single, complete, average
and centroid linkage options.

Complete linkage uses the maximal distance between two clusters as
their distance. Complete linkage typically finds clusters of similar
size, avoiding the long chains of similarities of single linkage.

Average linkage uses the average of all inter-cluster distances.

Centroid method uses the distance between the cluster centroids.

Ward’s method is another popular method for determining cluster
differences. The general idea with the Ward’s method is to choose
the merge with the lowest within-cluster scatter (or variance). Re-
member that the clustering configuration with the lowest within-
cluster scatter is one where each object is assigned its own cluster.
Each merge during agglomerative clustering increases the within-
cluster scatter. Then, we use the increase in the within-cluster vari-
ance incurred by merging two cluster as the distance between the
clusters. This method, tends to yield more spherical equal-sized
clusters (like k-means). Also note that although Ward’s method
often refers to an objective based on within-cluster variance, in
practice one can use any other objective function that may im-
prove clustering and/or that may be computationally convenient.

A schematic description of the basic linkage methods are demon-
strated in Figure ??. There are more linkage options than the ones
listed above. Most linkage methods result in cluster configurations
in-between single and complete linkage methods. In general, how-
ever, there is no single-best option. The choice of the linkage method
is ultimately data and application dependent.

Note that single, complete and average linkage methods (as well
as most variations of Ward’s method) would work on distances, with-
out need to access feature vectors in Rn. This may be useful in tasks
where some intuitive distance (or difference) can be defined between
the objects, but the features are not accessible or definition of a cen-
troid does not make sense. In computational/quantitative linguistics
research, it is commonplace to use such distances. For example using
Levenshtein distance between words. Another interesting property
of these three linkage methods is that the distances in higher lev-
els of cluster hierarchy never decrease. As a result the dendrograms
obtained are proper dendrograms.

1.1.4 Evaluating clustering results

Evaluation is often problematic for unsupervised methods. Unlike
their supervised counterparts, we do not typically have gold-standard
labels during training (if we had them we would use classification).
However, we often want to have an objective way for comparing clus-
tering results. Although none of them are without problems, there
are a number of major methods for obtaining evaluation metrics for
clustering.

Internal evaluation metrics calculate a statistic, a measure,
based only on the clustering result. Although there exists a num-
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Figure 1.11: A schematic description of
the silhouette metric. The metric tries to
maximize the average distance of each
data point (the data point labeled 3
in this example) to nearest cluster that
it does not belong to (blue lines), and
maximize the average distance of the
data point to the others in the same
cluster (red lines).

ber of different formulations, all of the internal evaluation metrics
indicate some sort of clustering consistency. That is, we want cluster
configurations where the distances within the clusters are low, and
the distances between the clusters are high. If you realized the simi-
larity of this statement with the similarity of the clustering objectives
(e.g., of k-means) repeated multiple times above, you have also real-
ized the problem. This type of evaluation will be biased towards the
clustering methods that use similar objectives.

There are a number of measures that are the variations of the same
idea above, including Davies–Bouldin index, Dunn index, silhouette co-
efficient, and gap statistics. These internal evaluation measures are
also useful for selecting the ideal number of clusters. That is, we
choose the k value that maximizes the evaluation metric of choice.
Unlike within-cluster scatter, these metrics do not always increase
(or decrease) as k is increased. Hence, to determine the best k value,
we may apply the clustering algorithm multiple times with varying
k, and pick the one with the best evaluation metric (e.g., gap statis-
tic). However, maximizing/minimizing the statistic does not always
result in the best clustering, and one often needs to resort visual aids
like scree plots (Figure ??) for making the optimal choice.

For the sake of a concrete example, we will discuss the silhouette
coefficient briefly here. The silhouette of a data point is defined as

si =
b(i) − a(i)

max(a(i),b(i))

where a(i) is the average distance between the object i to the other
objects in the same cluster, and b(i) is the average distance between
the object i and the objects in the closest cluster. The resulting index
value ranges in the interval [−1, 1]. A negative value means the data
point is closer to a neighboring cluster rather than its own cluster,
zero indicates a data point on the border, while a positive value indi-
cates a data point closer to its own cluster compared to others. The
average silhouette value over all data points indicate the quality of
clustering, where larger numbers indicate better clustering configu-
rations. Although, the preferred clustering configurations depends
on the distance metric (and the way the objects are represented),
in general, this evaluation metric prefers compact clusters that are
well-separated from the neighboring clusters. Sometimes silhouette
score is used for selecting the optimum number of clusters. A con-
figuration (number of clusters) that result in no (or least number of)
negative silhouette scores is preferred over the other configurations.
Also note that, like any other internal metric, we could use average
si as the objective to maximize during clustering. The only reason
for not having a wide-spread method based on maximizing the av-
erage silhouette score is that there is no known way to maximize it
efficiently.

External evaluation methods depend on a gold-standard test
set. We may not have enough labeled data for training a classifier.
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4 Not surprisingly, the term complete-
ness is used for the same quantity as
recall in some disciplines.

Cluster 1 Cluster 2 Cluster 3

Figure 1.12: An example clustering so-
lution with gold-standard labels (repre-
sented as shapes). Cluster 2 is pure,
or fully homogeneous. The label rep-
resented by triangle is completely con-
tained in cluster 1. The actual calcula-
tions of homogeneity, completeness and
V-measure scores are left as an exercise.

However, if we have a (small) labeled test data, an external evalua-
tion metric gives a direct comparison with the intended classes. The
comparison of the labels, however, is not straightforward. Since the
label assignments to clustering results are arbitrary, we cannot match
them directly with gold-standard class labels.

Almost all external cluster evaluation metrics rely on a version of
two properties. First, we want each cluster to be composed of mem-
bers of a single gold-standard class. Second, we want all members
of a gold-standard class to be assigned to a single cluster. The first
property, homogeneity, has the trivial solution of assigning all data
points to their own clusters. Similarly, the second property, complete-
ness, can trivially be obtained by assigning all data points to a single
cluster. Homogeneity is similar to precision, and completeness is
similar to recall.4 However, we do not need to have matching labels
in the clustering solution to calculate the homogeneity and complete-
ness scores. Also note that, similar to precision and recall, increasing
one will likely to decrease the other.

Homogeneity and completeness can be quantified in a number of
different ways. One popular way to define these quantities is based
on entropy. Given a clustering solution K, and gold standard classes
C, we can quantify homogeneity (h) and completeness (c) as

h =

1 if H(C,K) = 0

1−
H(C |K)
H(C) otherwise

c =

1 if H(C,K) = 0

1−
H(K |C)
H(K) otherwise

Remember that conditional entropy, H(x | y), is equal to the en-
tropy of x if y does not provide any information about x. Otherwise,
H(x|y) is smaller than H(x). Hence, both h and c range between
[0, 1]. High values of h can be obtained when we can predict the
gold-standard classes from the clusters, which is possible when each
cluster is dominated by the members of a single class. So, once we
know the cluster, we can tell with high certainty which class it be-
longs to. High values of c are obtained when the gold-standard
classes can be mapped to the clustering solution without loss. Hav-
ing multiple clusters for a single class will reduce the c value.

If we treat the clustering solution and the gold standard classes
as categorical distributions over the clustered objects, estimate the
necessary probability values using MLE, the calculation of the (con-
ditional) entropy values above are simple.

Now we can define a measure analogous to F-measure, which is
called V-measure as,

V-measure =
2× h× c
h+ c

There are quite a few other measures of external cluster evalua-
tion, that we will not discuss here. Interested readers can find a few
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5 The likelihood of parameter(s), θ, of a
model, defined by such as a probability
distribution, given the data x is,

L(θ |x) = p(x |θ)

where p(·) is the value of probability
mass function PMF for a discrete distri-
bution, and probability density function
(PDF) for a continuous distribution.

Remember that a discrete probability
distribution can be characterized by a
PMF that returns probabilities. Con-
tinuous variables are characterized by
a PDF whose values are arbitrary non-
negative real numbers (not probability
values).

pointers to relevant literature at the end of the chapter.

Evaluation based on an external task is another option. The
clustering is often used as a means to improve a particular system.
For example, if we are using clusters of words as features for a clas-
sifier, e.g., parser actions during parsing, then the improvement in
parsing can be used as the evaluation metric for the clustering re-
sults. Although this is not always applicable, if our aim is to improve
a task using clustering, it is the naturally the best evaluation metric.

Human judgments, although subjective, are sometimes the only
option, and can be useful even if one uses one of the more objective
approaches outlined above. Aided with visualizations, human eval-
uation is often useful (or insightful, since getting insights about data
is one of the reason for using unsupervised methods).

1.2 Density estimation

The clustering algorithms we discussed above assume that each data
point belongs to only one cluster. For many problems this is appro-
priate and/or desirable. For others, it makes more sense to assign
objects to multiple clusters. For example, while clustering news ar-
ticles into topics, we may want to let the system to label an article
belonging both ‘economics’, ‘politics’ and maybe more groups. Fur-
thermore, even if the ultimate aim is to assign each object to a single
group, we may want to have a more ‘softer’ membership decision,
so that more typical members of a group get higher membership
score/status.

There are a number of soft or fuzzy versions of the clustering algo-
rithms we discussed above. A typical approach is to weigh the mem-
bership of each object based on their distance from the centroid. For
hierarchical clustering methods, a statistical/soft clustering can be
obtained using bootstrap, or doing multiple clustering experiments
with added noise. Rather than reviewing these methods, we will go
through a more basic approach, density estimation, below.

In density estimation, we assume that the data at hand is gen-
erated from a number of (parametric) probability density functions.
The task is, then, finding the parameters of the probability distribu-
tion(s) given the data. Once the parameters of the underlying proba-
bility distributions are estimated, likelihood of the parameters given
each data point can be calculated based on the estimated probability
density or probability mass function.5 As a result, we can quantify
the degree of membership to one of the distributions (or clusters). A
hard cluster membership decision can be made by simply choosing
distribution which assigns the highest likelihood to the each point in
question.

A popular instance of mixture models assume that the underly-
ing distributions are normal (Gaussian) distributions, and resulting
models are known as mixtures of Gaussians or Gaussian mixtures. In
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6 Note, again, that we are making these
simplifications to aid understanding.
The EM algorithm can be used for more
complex problems. The method we de-
scribe here can easily be adapted to
more than 2 distributions. This re-
quires estimating parameters (e.g., µ)
for more distributions, and instead of
using a scalarα, we employ a vector,α,
whose components specifying the pro-
portion of data points generated from
each distribution (hence,

∑
iαi = 1).

Similarly, we can generalize the algo-
rithm to multivariate Gaussian distribu-
tions by allowing µi to be vectors in
a higher dimensional space. There is
also no reason (other than simplicity)
for having a fixed variance, we can esti-
mate the variances of each distribution,
as well as modeling covariances.

principle, however, there is no reason to limit the density estimation
to Gaussian distributions, and examples of other distributions, such
as categorical or multinomial distributions are common in computa-
tional linguistics literature.

As in clustering, finding the optimum parameters is intractable for
most applications of density estimation. As a result, we often opt for
a solution that finds a local optimum. Below, we will briefly describe
the expectation-maximization (EM) algorithm. The EM algorithm is a
very well-studied and popular iterative algorithm for solving learn-
ing problems involving latent, or unobserved, variables. In density
estimation, the latent variables are the parameters of the hypothe-
sized probability densities.

A general sketch of the EM algorithm is given below.

1. Initialize the parameters (e.g., randomly) of Kmultivariate normal
distributions (µ,Σ)

2. Iterate until convergence:

E-step Given the parameters, compute the membership ‘weights’ (some-
times called responsibilities), the likelihood of each data point
belonging to each hypothesized distribution

M-step Re-estimate the mixture density parameters using the calcu-
lated membership weights in the E-step

Note that the algorithm is very similar to the k-means algorithm
described above. In fact, if we choose our mixture densities to be
K Gaussian distributions, we get a soft version of the k-means algo-
rithm.

Below, we will go through a very simple example for the purposes
of understanding the density estimation and the EM algorithm. We
will assume that our data comes from 2 normal distributions with
a known variance but different means µ1 and µ2. Hence, estimat-
ing µ1 and µ2 allows us to characterize the underlying distribu-
tions. We need one more parameter, α, for specifying the ratio of
the data points generated from the first distribution (the distribution
with mean µ1).6 From a Bayesian point of view, the parameter α can
be thought as the prior probability of a point belonging to the first
distribution.

In this simplified example, the parameters we want to estimate are
µ1, µ2, and α. We will collectively call these parameters θ. In other
words, the parameters of interest is the vector θ = (µ1,µ2,α).

The EM algorithm starts with initializing the parameters. Typi-
cally, the initialization is done randomly, but as in k-means, ‘more
informed’ initialization methods exist.

In the E-step, for every data point xi, we calculate the member-
ship weights, that is p(k = 1 | xi; θ) and p(k = 2 | xi; θ), where we use
the notation k = 1 to indicate that the data point belongs to the dis-
tribution with mean µ1. For n data points, the membership weights
can be represented by a n× 2 matrix A, such that ai,k indicates the
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7 With known variance σ,

p(xi |k = 1,µ1) =
e
−

(xi−µ1)
2

2σ2

σ
√
2π

8 Remember that because of computa-
tional reasons, we work with logarithm
of the likelihood in practice.

membership weight of ith data point being generated from the kth

distribution. We can calculate ai,1 using

ai,1 = p(k = 1 | xi, θ) =
αp(xi | k = 1)

αp(xi | k = 1) + (1−α)p(xi | k = 2)

where p(xi | k = 1,µ1) is simply calculated using the normal PDF.7

The membership weights for the distribution with mean µ2, follows
from the same equation. However, since we have only two classes,
we can simply calculate it by subtracting the corresponding weight
of the first distribution from 1 (ai,2 = 1− ai,1).

In the M-step, assuming that the membership assignments are
correct, we re-estimate the parameters based on the membership
weights calculated in the E-step. The mixture parameter α can be
calculated by dividing the weighted counts (n1) of the first distribu-
tion membership weights to the total number of data points.

αnew =
n1
n

where n1 =
∑n
i=1 ai,1. The weighted count for the second distri-

bution can be calculated similarly, or by simply n2 = n− n1. The
means of the distributions are also estimated similarly, as a weighted
average of each data point.

µnew
1 =

1

n1

n∑
i=1

ai,1xi

Now, we have new values for each member of θ, we can return
to E-step recalculating the membership weight matrix A. The algo-
rithm alternates between E and M steps until a defined convergence
criterion is reached. The convergence criterion is typically based on
log-likelihood of the data. We observe the likelihood at each itera-
tion, and stop when it does not improve (more than a defined thresh-
old). The log-likelihood is the logarithm of the likelihood of the data,
under the model assumptions. Assuming that the data points are
conditionally independent given the model, likelihood of the model
parameters can be computed as

L(θ | x) = p(x |θ) =

n∏
i=1

αp(xi | k = 1) + (1−α)p(xi | k = 2)

as before, p(xi | k = 1) and p(xi | k = 2) is calculated by plugging
relevant x, µ and the fixed-known σ into the normal PDF function.8

As noted above, the EM algorithm is a popular, well-studied al-
gorithm for many problems involving latent variables. Probably one
of the reasons for its popularity is that it is guaranteed to converge.
However, it converges to a local optimum value. As a result, simi-
lar to the k-means algorithm, one way to look for better solutions is
to re-estimate the parameters with different (random) initializations.
As in k-means, again, the number of components (or distributions)
has to be specified.



18 statistical nlp: course notes

x1

x2

p1

p2

p3

-4

-4

-3

-3

-2

-2

-1

-1 00

1

1

2

2

3

3

4

4

Figure 1.13: Three data points in R2.
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Figure 1.14: A transformation (rotation)
applied to the data in Figure ??.
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Figure 1.15: A slight variation of the 2D
data in Figure ?? without perfect corre-
lation (top), and its rotated version in
Figure ?? applied to it (bottom).

1.3 Dimensionality reduction

Another family of well-known and popular methods in unsuper-
vised learning is dimensionality reduction. In many problems, we have
to deal with (very) high dimensional data. However, most of these
dimensions are highly correlated, and ‘meaningful’ dimensions of
the data is often much lower. A typical example in computational
linguistics is characterization of a collection of documents based on
(a measure of) the words that occur in each document. In this type
of representation, each document is represented with a vector whose
size is equal to the size of the vocabulary. Arguably, however, the
differences or similarities between the documents can be attributed
to a much lower number of latent dimensions (for example, related
to the topic or style). Finding these underlying/latent dimensions
has a number of benefits, including the following.

• It is easier to visualize and understand lower-dimensional data

• Reducing the dimensionality helps reduce the computational com-
plexity of the other methods applied to the data

• Related to above, one can use such a dimensionality reduction as
a lossy compression method

• The lower-dimensional representation removes the noise, poten-
tially resulting in better generalizations

We motivate the dimensionality reduction with a simple artificial
example. Figure ?? presents three data points in two-dimensional Eu-
clidean space (R2). Although our data points are represented by two
features, a careful look at the figure shows that all of our data points
perfectly lines up on a single line. Intuitively, the two-dimensional
representation is unnecessary. This can be seen in Figure ?? where
the data points are mapped to another coordinate system by a simple
linear transformation (rotation). Note that in Figure ??, the dimen-
sion z2 is always 0.

In real-world data sets, it is not usual to come across perfectly
correlated variables as in Figure ??. However, in many real data sets,
some features/dimensions in the data have very little information
given the others. Figure ?? shows the result of applying the same
transformation to a similar data set with very high correlation. The
z2 dimension in the transformed version of this data set shows some
variation. Hence, it is not completely redundant. However, it is also
clear that if we remove z2 (set it to 0 for all data points), we do
not lose much information. If we do the inverse transformation, or
‘reconstruct’ the original data from the bottom part of Figure ??, the
result will be as in Figure ??, which is not equal to the top panel of
Figure ??, but it is not too far from it, i.e., the reconstruction error is
small.

Dimensionality reduction is a general term used for a number of
methods that reduce the dimensionality of the data by exploiting the
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Figure 1.16: Interpretation of the PCA
as finding the direction of the highest
variance.
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Figure 1.17: Interpretation of the PCA
as finding a lower dimensional repre-
sentation with minimum reconstruction
error.

dependencies in a high-dimensional feature space. There are a num-
ber of different methods for dimensionality reduction. Here, we will
discuss a linear method, principal component analysis (PCA). The PCA
is the simplest, and probably the most popular dimensionality reduc-
tion technique. Many other methods can be considered extensions of
PCA.

Our toy example above, in fact, demonstrates the PCA. Similar
to this informal example, the PCA performs a linear transformation
(rotation), of the original data set into another linear space such a
way that the variables/dimensions are no more correlated. In other
words, the new features, the principal components, are a linear com-
bination of the original features. For example, in our example above,
z1 = 3

5x1 +
4
5x2 and z2 = −45x1 +

3
5x2. The transformation by it-

self does not reduce the dimensionality of the data (we still have two
components for z in the example above). However, we can discard
the latent dimensions with low variance as they do not contain much
information, and discarding these dimensions will have little effect
on the reconstruction error.

The discussion above hints at a few different ways to look at the
PCA, and, in general, dimensionality reduction. First, we can view it
as a procedure to find the direction of the highest variance, the first
principal component, then finding another direction with the highest
variance which is (linearly) independent from, as a result perpendic-
ular to, the first one, and find yet the direction of the largest variance
that is perpendicular to previously found components, and so on.
Figure ?? demonstrates this idea. Since we have only two dimensions
in Figure ??, the second principal component is simply perpendicu-
lar to the first one.

A second way to view PCA is finding a lower dimensional repre-
sentation such that the reconstruction error is minimum. Figure ??
demonstrates this in two dimensions. If we reduce the data to a sin-
gle dimension, we would like to find the line (the lower dimensional
space) with the minimum reconstruction error, which turns out to be
the line that has the minimal average distance from all data points.
The PCA in this example would map original data points (blue) to
the points on the first principal component (red points). The map-
ping with the least error is the mapping with the minimum perpen-
dicular distance between the data points and their image under the
transformation. Considering this is a linear transformation, the idea
translates to higher dimensional spaces trivially.

Yet another view is to assume that the data is generated by a lower
dimensional hidden (or latent) variable, then it is mapped to a higher
dimensional space with some added noise. This view is similar to
our discussion of clustering and mixture densities. However, the la-
tent variable in this case is a continuous one, while clustering and
density estimation assumes a categorical latent variable. In particu-
lar, the PCA, according to this interpretation, assumes a multi-variate
latent Gaussian variable.

Depending on the view, there are different ways to formulate a
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9 Remember the relation between or-
thogonality and independence.

10 Remember that to standardize a vari-
able, we center it by subtracting the
mean of the variable, and scale it with
it standard deviation. The standardized
version of the variable x with mean µ
and standard deviation σ is

z =
x−µ

σ
.

Note that this is a linear (more correctly,
an affine) mapping between x and z.
Any linear operation on z can be ex-
pressed in terms of x by the inverse
transformation.
11 Note that if our data matrix X is
arranged such that columns represent
the features, and rows represent the in-
stances (data points), and if the vectors
representing each data point are stan-
dardized, the covariance matrix of X
can be calculated with

Σ = XTX.

12 We can obtain a transformed version
of the original data matrix, by Z =

XU. Note that this holds because the
data vectors are rows of X, and the
transformed vectors will be the rows of
Z.

procedure for performing the PCA. Following the variance maxi-
mization approach, we can use a few well-established procedures
from linear algebra. For reducing the reconstruction error, we can
write an appropriate objective function, and find the principal com-
ponents that minimize it. If we take the latent-variable view, we can,
for example, use the EM algorithm to estimate the parameters of the
lower-dimensional latent variable, similar to estimating the mixture
models. Here, we will only discuss the first approach in a bit more
detail.

The first approach for obtaining principal components is a well-
known method from linear algebra called eigenvalue decomposition.
Here we will limit ourselves to a special case of eigenvalue decom-
position, where the matrix we want to decompose is symmetric. For
a symmetric matrix A, the eigenvalue decomposition results in

A = UΛUT

where columns of U are orthogonal to each other, and they are the
eigenvectors of A. As a result, the columns of U are not correlated.9

Λ is a diagonal matrix with corresponding eigenvalues.
Remember that for the PCA, we are interested in a linear trans-

formation where the resulting features are decorrelated, and we also
want to be able to tell the features that are associated with the large
variance. When applied to a covariance matrix, the decomposition
above gives us both: the eigenvectors are decorrelated (orthogonal to
each other), and the larger the eigenvalues, the larger the amount of
variance. For the rest of the discussion here, we will assume that our
variables are standardized.10

To perform PCA using eigenvalue decomposition, we simply ap-
ply it to the covariance matrix (Σ = UΛUT ).11 The columns of U
is now the directions of the principal components, and the diagonal
values ofΛ indicate the magnitude of the variance in the correspond-
ing direction. The matrix of eigenvectors, U, transforms the vectors
from the original input space to the space of the principal compo-
nents. Any (column) vector x can be transformed by z = UTx.12

If we want to transform z back to the original feature space, all we
need to do is to use the inverse transformation. A nice property of
the orthogonal matrices is that their inverse is their transpose. As a
result, the inverse transformation is simply x = Uz.

Note, however, that we have not done any dimensionality reduc-
tion yet. If our original feature space has m dimensions, the dimen-
sion of the covariance matrix Σ, and hence the dimensions of the
matrix U, will be m ×m, multiplying U with any m-dimensional
vector x results in another m-dimensional vector z. Instead of using
the complete matrix U we can pick only the eigenvectors (columns)
that correspond to the largest d eigenvalues. This will result in a
matrix UL with m× d dimensions whose transpose can be used to
transform m-dimensional input to the lower d-dimensional space.

Although the eigenvalue decomposition explained above demon-
strate the PCA conceptually as decorrelation and maximizing vari-
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Figure 1.18: A schematic descrip-
tion of a restricted Boltzmann machine
(top), and equivalent representation as
a (undirected) graphical model (bot-
tom).
13 Notice the similarity of this formula
with the multinomial logistic regression
discussed earlier.

ance, another well-known method from linear algebra, singular value
decomposition (SVD), is often more convenient for performing the
PCA. The SVD factorizes the data matrix X directly such that

X = VDUT

where V and UT are orthogonal matrices, and D is a diagonal ma-
trix of singular values. As in eigenvalue decomposition, rows of UT

contain the eigenvectors. The diagonal matrix D is related to eigen-
values (D2 = Λ). The result, hence, is equivalent. The SVD has some
other applications we will get back later in this course.

1.4 Unsupervised learning with neural networks

Typical neural networks are trained using backpropagation, which
requires supervision, an error signal to be backpropagated thorough
the network. However, there are a number of ways to use neural
networks as unsupervised learners. Here we will introduce a typi-
cal unsupervised method to train neural networks, autoencoders, and
briefly note two, a well-known generative network (RBMs), and a
more recent use of both generative and discriminative methods (ad-
versarial networks).

1.4.1 Restricted Boltzmann machines

As in other unsupervised approaches we discussed earlier, one way
to formulate unsupervised learning through a neural network is to
use hidden or latent variables. Restricted Boltzmann Machines (RBMs)
is such a network architecture consisting of one hidden layer (the la-
tent variable) and an input layer (depicted in Figure ??). The layers
of the RBM are fully connected, but there are no links within the lay-
ers. Although it is not a requirement, typically the hidden layer has a
smaller dimension than the input layer. Hence, the idea is very sim-
ilar to PCA, or other dimensionality reduction methods. We present
an input to the network, and obtain a useful (lower dimensional)
representation of the input at the hidden layer.

In an RBM, we do not have outputs (or inputs, the RBM models
the data as is, without an input–output distinction). Hence, we can-
not just define a loss function based on the expected output, and use
backpropagation to train the network. RBMs are generative models
that model the joint probability of the hidden variable and the input.
The joint probability distribution defined by an RBM is13

p(h, x) =
eh
TWx

Z
.

where Z a normalizing constant (a sum over all possible configura-
tions) that makes sure that the result is a proper probability distribu-
tion. Learning in an RBM, then, becomes finding the parameters that
that maximize this joint probability. The exact solution to this learn-
ing problem is intractable. In practice often an approximate solution
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Figure 1.19: An autoencoder, a stan-
dard feed-forward network predicting
its own input.
14 The encoder–decoder architecture is
not restricted to ‘auto’ encoding. They
are also used in solving problems
where input–output pairs are different,
e.g., in machine translation.
15 Weight sharing is a common concept
in neural networks, especially in more
complex models. When it makes sense,
weight sharing reduces the model com-
plexity, and may result in learning bet-
ter models.
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Figure 1.20: An over-complete autoen-
coder.
16 Not surprising, the autoencoders
with a lower dimensional hidden repre-
sentation, like the one in Figure ??, are
called under-complete autoencoders.
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Figure 1.21: A denoising autoencoder.

is found using contrastive divergence algorithm, which is an iterative
algorithm similar to the EM algorithm discussed earlier.

1.4.2 Autoencoders

RBMs are theoretically interesting models. However, training RBMs
is computationally expensive, and since training them requires a spe-
cial algorithm, it does not benefit from many developments in the
(supervised) neural network literature. Autoencoders are a practical
solution to elevate some of these problems.

An autoencoder is a standard feed-forward network trained to
predict its own input. Figure ?? presents a typical autoencoder. We
can consider an autoencoder in two parts, an encoder that takes the
input and encodes in a hidden layer, and a decoder that takes the
hidden representations and reconstructs the output.14 The weights
of the encoder and decoder may be shared. That is, the weights of the
decoder (W) are the transpose of the weights of the encoder (W∗).15

Since the network has to predict its own input, through a lower
dimensional representation in the hidden layer, it needs to learn a
hidden representation with minimum reconstruction error. Again,
the idea is similar to PCA. An autoencoder with a single layer, in
fact, approximates the PCA. Autoencoders with multiple hidden lay-
ers (deep autoencoders), can learn non-linear relationships between
the input variables. Besides the potential benefit of discovering non-
linear relationships, another practical benefit of autoencoders is their
memory efficiency. The matrix factorization techniques used for
fitting a PCA model may require a large amount of memory on
large data sets. Since autoencoders are trained like a standard feed-
forward network, they can be efficiently trained using small batches.

Autoencoders are typically used to learn a lower dimensional hid-
den representation. However, it is also possible to use a larger hid-
den representation as shown in Figure ??. Such autoencoders are
called over-complete autoencoders.16 A particular use of such autoen-
coders is to train them with L1 regularization, forcing them to learn
sparse features form more complex input features. The hidden rep-
resentation in this case ‘disentangles’ some of the complex features
to simpler ones – which are hopefully more interpretable or useful
for a downstream task.

Another variation of autoencoders is denoising autoencoders. As
shown in Figure ??, the input of a denoising autoencoder is corrupted
with noise. When trained, the autoencoder learns to eliminate the
type of noise introduced. Hence, possibly being useful for removing
noise, e.g., from images or sound signals. Note that unlike the typical
use of autoencoders where we may also be interested in the hidden
representations rather than the output of the network, in this use, we
are interested in full reconstruction.
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17 Just to exemplify, a painting gener-
ated by a GAN was recently sold for
$432500.

1.4.3 Generative adversarial networks

Another, rather recent but highly influential method is generative ad-
versarial networks (GANs). Although it is introduced, and mainly
used with (deep) neural networks, the interesting part of GANs is
the training regime of the system. In a GAN, there are two clas-
sifiers; a generative model (similar to RBMs) that tries to generate
objects of interest (e.g., paintings by an artist, or novels of an au-
thor), while a discriminative model tries to distinguished the true
instances of the objects from the objects generated by the generative
model. The interesting part of the approach is that, the success (or
failure) of the discriminative network is used as the supervision sig-
nal for the generative one. The task of the generative model is to fool
the discriminative model. As it becomes more successful in doing so,
it learns a better representation for the data.

We will not discuss GANs in detail here, but they are one of the
relatively recent developments that became popular in a number of
fields, even with some impact on popular culture.17

Summary

The methods covered in this lecture consists of unsupervised meth-
ods. We covered three traditional unsupervised methods. Namely,
clustering, density estimation and dimensionality reduction. On the
(deep) neural networks side, we described autoencoders, which are
simply feed-forward networks predicting their own input, and noted
two interesting models briefly, RBMs and adversarial networks.

More information on traditional methods can be found in almost
any machine learning text book (hastie2009; mackay2003; bishop2006).
You can also find discussion of autoencoders in recent textbooks on
neural network (goodfellow2016; marsland2015).


