Statistical Natural Language Processing
Dense vector representations
Çağrn Çoltekin
University of Tutingst
Summer Semester 2021

Representations of linguistic units

- Most ML methods we use depend on how we represent the objects of interest, such as
- words, morphemes
- sentences, phrases
- letters, phoneme
- documents
- speakers, authors
- The way we represent these objects interacts with the ML methods
- We will mostly talk about word representations
- They are also applicable any of the above and more

Symbolic (one-hot) representations

A common way to represent words is one-hot vectors

- No notion of similarity
- Large and sparse vectors

More useful vector representations

- The idea is to represent similar words with similar vectors

$$
\begin{aligned}
\text { cat } & =(0,3,1, \ldots, 4) \\
\operatorname{dog} & =(0,3,0, \ldots, 3)
\end{aligned}
$$

book $=(4,1,4, \ldots, 5)$

-The similarity between the vectors may represent similarities based on

- syntactic
- semantic
- topical
- form
. ... features useful in a particular task
smararsmeder 3 el $\quad x / 4$

Where do the vector representations come from?

- The vectors are (almost certainly) learned from data
- Typically using an unsupervised (or self-supervised) method
- The idea goes back to,

You shall knowo a woord by the company it keeps. -Firth (1957)

- In practice, we make use of the contexts (company) of the words to determine their representations
The words that appear in similar contexts are mapped to similar representations

How to calculate word vectors?
count word in context

\quad| c_{1} | c_{2} | c_{3} | \ldots | c_{m} |
| :---: | :---: | :---: | :---: | :---: |
| cat | | | | |
| dog | | | | |
| book | | | | |\(\left[\begin{array}{ccccc}0 \& 3 \& 1 \& ··· \& 4 \\

0 \& 3 \& 0 \& ··· \& 3 \\
4 \& 1 \& 4 \& ··· \& 5\end{array}\right]\)

+ Now words that appear in the same contexts will have similar vectors
- The frequencles are often normalized (PMI, TF-IDF)
- The data is highly correlated: lots of redundant information
- Still large and sparse

How to calculate word vectors?
counts, factorize, truncate

Scatian ss/trowerar or mina

How to calculate word vectors?
latent variable models (e.g, LDA)

- Assume that the each 'document' is generated based on a mixture of latent variables
- Learn the probability distributions
- Typically used for topic modeling (θ)
- Can model words too (ϕ)

A toy example
A four-sentence corpus with bag of words (BOW) model.

Term-document (sentence) matrix				
	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

A toy example

A four-sentence corpus with bag of words (BOW) model.

	*	-	$\stackrel{*}{*}$	से	若	di	8	8	8
she	2	0	0	0	0	0	0	0	0
he	2	0	0	0	0	0	0	0	0
tikes	0	2	1	0	0	0	0	0	0
reads	0	0	1	0	0	0	0	0	${ }^{0}$
cats	0	0	0	1	0	0	0	0	1
dogs	0	0	0	1	0	0	0	0	1
books	0	0	0	1	1	0	0	0	0
and	0	0	0	0	0	1	1	0	0

Term-document matrices

- The rows are about the terms: similar terms appear in similar contexts
The columns are about the context: similar contexts contain similar words.
- The term-context matrices are typically sparse and large

Term-document (sentence) matrix

	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

SVD (again)

- Singular value decomposition is a well-known method in linear algebra
- An $n \times m$ (n terms m documents) term-document matrix X can be decomposed as

$X=U \Sigma V^{\top}$

U is a $n \times r$ unitary matrix, where r is the rank of X ($r \leqslant \min (n, m)$). Columns of
U are the eigenvectors of XX^{\top} U are the eigenvectors of $\mathrm{XX}{ }^{\top}$
Σ is ar $\times r$ diagonal matrix of singular values (square root of eigenvalues of $X X^{\top}$ and $X^{\top} X$)
V^{\top} is a $+\times m$ unitary matrix. Columns of V are the eigenvectors of $X^{\top} X$

- One can consider \mathbf{U} and V as PCA performed for reducing dimensionality of rows (terms) and columns (documents)
\qquad

Truncated SVD

$X=U \Sigma V^{\prime}$

- Using eigenvectors (from \mathbf{U} and \mathbf{V}) that correspond to k largest singular values ($\mathrm{k}<\mathrm{r}$), allows reducing dimensionality of the data with minimum loss - The approximation,

$$
\hat{\mathrm{x}}=\mathrm{u}_{\mathrm{k}} \Sigma_{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}
$$

results in the best approximation of X, such that $\|\hat{X}-X\|_{F}$ is minimum

Truncated SVD

$\mathbf{X}=\mathbf{U \Sigma} \mathbf{V}^{\mathrm{T}}$

- Using eigenvectors (from \mathbf{U} and \mathbf{V}) that correspond to k largest singular values ($\mathrm{k}<\mathrm{r}$), allows reducing dimensionality of the data with minimum loss
The approximation,

$$
\dot{\mathrm{X}}=\mathrm{u}_{\mathrm{k}} \Sigma_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}
$$

results in the best approximation of \mathbf{X}, such that $\|\hat{X}-\mathbf{X}\|_{F}$ is minimum
Note that r and n may easily be millions (of words or contexts), while we choose k much smaller (a few hundreds)

Truncated SVD (2)

$$
\left[\begin{array}{ccc}
u_{1,1} & \ldots & u_{1, k} \\
u_{2,1} & \ldots & u_{2, k} \\
u_{3,1} & \ldots & u_{3, k} \\
\vdots & \ddots & \vdots \\
u_{n, 1} & \ldots & u_{n, k}
\end{array}\right] \times\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{k}
\end{array}\right] \times\left[\begin{array}{cccc}
v_{1,1} & v_{1,2} & \ldots & v_{1, m} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k, 1} & v_{k, 2} & \ldots & v_{n, m}
\end{array}\right]
$$

\square

Truncated SVD (2)

$$
\left[\begin{array}{ccccc}
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, m} \\
x_{2,1} & x_{2,2} & x_{2,3} & \ldots & x_{2, m} \\
x_{3,1} & x_{3,2} & x_{3,3} & \ldots & x_{3, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & x_{n, 3} & \ldots & x_{n, m}
\end{array}\right]=
$$

$$
\left[\begin{array}{ccc}
u_{1,1} & \ldots & u_{1, k} \\
u_{2,1} & \ldots & u_{2, k} \\
u_{3,1} & \ldots & u_{3, \mathrm{k}} \\
\vdots & \ddots & \vdots \\
u_{\mathrm{n}, 1} & \ldots & u_{\mathrm{n}, \mathrm{k}}
\end{array}\right] \times\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{\mathrm{k}}
\end{array}\right] \times\left[\begin{array}{cccc}
v_{1,1} & v_{1,2} & \ldots & v_{1, \mathrm{~m}} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k, 1} & v_{\mathrm{k}, 2} & \ldots & v_{\mathrm{n}, \mathrm{~m}}
\end{array}\right]
$$

The term ${ }_{1}$ can be represented using the first row of \mathbf{U}_{k}

Truncated SVD: with a picture

Step 1 Get word-context associations
Step 2 Decompose
Step 3 Truncate

Truncated SVD (2)

$\left[\begin{array}{ccc}u_{1,1} & \ldots & u_{1, k} \\ u_{2,1} & \ldots & u_{2, k} \\ u_{3,1} & \ldots & u_{3, k} \\ \vdots & \ddots & \vdots \\ u_{n, 1} & \ldots & u_{n, k}\end{array}\right] \times\left[\begin{array}{ccc}\sigma_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \sigma_{k}\end{array}\right] \times\left[\begin{array}{cccc}v_{1,1} & v_{1,2} & \ldots & v_{1, m} \\ \vdots & \vdots & \ddots & \vdots \\ v_{k, 1} & v_{k, 2} & \ldots & v_{n, m}\end{array}\right]$
The document, can be represented using the first column of V_{k}^{\top}

Truncated SVD example										
The corpus: (s1) She likes cata and doga (S2) He likes doga and cats (g3) She likes books (54) He reads booka					Truncated SVD ($\mathrm{k}=2$)					
						-0.24	-0.63	he		
						-0.52	0.15	likes		
		S2	S3	S4	u-	-0.43	-0.01	reats		
she	1	0	1	0		-0.43	0.01	dogs		
he	0	1	0	1		-0.43	-0.49]			
likes	1	1	1	0						
reads	0	0	0	1		[3.11	$0]$			
cats	1	1	0	0		0	. 81			
dogs	1		0	0		S1	S2	s3	54	
books	0	0	1	1		[-0.68	0.26	-0.11	$-0.66]$	
and	1	1	0			-0.66	-0.23	0.48	$0.50]$	
ccaume 58	momm	armas						sarma	meatras	35) 3

Truncated SVD (with BOW sentence context)

The corpus:
(s1) She 1ikos cats and doga
(S2) Es likes doga and cata
(93) She likes books
(54) Be raads books

SVD: LSI/LSA

SVD applied to term-document matrices are called

- Latent semantic analysis (LSA) if the aim is constructing tern vectors - Semantically similar words are closer to each other in the vector space
- Latent semantic indexing (LSI) if the aim is constructing document vectors - Topically related documents are closer to each other in the vector space

Context matters

In SVD (and other) vector representations, the choice of context matters

- Larger contexts tend to find semantic/topical relationships
- Smaller (also order-sensitive) contexts tend to find syntactic generalizations

SVD based vectors: practical concerns

- In practice, instead of raw counts of terms within contexts, the
term-document matrices typically contain term-document matrices typically contain
- pointwise mutual information
- Hf -idf
- If the aim is finding latent (semantic) topics, frequent/syntactic words (stoproords) are often removed
- Depending on the measure used, it may also be important to normalize for the document length

SVD-based vectors: applications

- The SVD-based methods are commonly used in information retrieval
- The system builds document vectors using SVD
- The search terms are also considered as a document
- System retrieves the documents whose vectors are similar to the search term
- The well known Google PageRank algorithm is a variation of the SVD
In this context, the results is popularly called
"the $\$ 25000000000$ eigenvector".

Predictive models

- Instead of dimensionality reduction through SVD, we try to predict - either the target word from the contex
- or the context given the target word
- We assign each word to a fixed-size random vector
- We use a standard ML model and try to reduce the prediction error with a method like gradient descent
- During learning, the algorithm optimizes the vectors as well as the model parameters
- In this context, the word-vectors are called embeddings
- This types of models have become very popular in the last few years
- The SVD-based methods for semantic similarity is also common
- It was shown that the vector space models outperform humans in
- TOEFL synonym questions

Receptors for the sense of smell are located at the top of the nasal cavity. A. upper end \mathbf{B}. inner edge \mathbf{C}. mouth \mathbf{D}. division

SAT analogy questions \qquad
A. redundant : discussion
B. austere : landscape
C. opulent : wealth
D. oblique : familiarity
E. banal : originality

- In general the SVD is a very important method in many fields
- The idea is the 'locally' predict the context a particular word occurs

Both the context and the words are represented as low dimensional dense vectors

Typically, neural networks are used for the prediction

- The hidden layer representations are the vectors we are interested

word 2 vec

CBOW and skip-gram modes - conceptually

CBOW

Skip-gram

Issues with softmax

$$
P(c \mid w)=\frac{e^{v_{w} \cdot c_{c}}}{\sum_{c^{\prime} \in c^{\prime}}^{e^{c_{c} v_{w}}}}
$$

A particular problem with models with a softmax output is high computational cost:
-For each instance in the training data denominator has to be calculated over the whole vocabulary (can easily be millions)

- Two workarounds exist:
- Negative sumpling: a limited number of negative examples (sampled from the corpus) are used to calculate the denominator
- Hienircticil softmax: turn output layer to a binary tree, where probability of a word equals to the probability of the path followed to find the word
- Both methods are applicable to training, during prediction, we still need to compute the full softmax
word 2 vec : some notes

Note that word 2 vec is not 'deep'
wordzvec preforms well, and it is much faster than earlier (more complex)
ANN architectures developed for this task
The resulting vectors used by many (deep) ANN models, but they can also be used by other 'traditional' methods
word2vec treats the context as a BoW, hence vectors capture (mainly) semantic relationships

- There are many alternative formulations
c_{w} for context
- Objective of the learning is to maximize (skip-gram)

$$
\mathrm{P}(\mathrm{c} \mid w)=\frac{\mathrm{e}^{v_{w} \cdot c_{c}}}{\sum_{c^{\prime} \in c} \mathrm{e}^{\mathrm{c}^{\prime} \varepsilon^{\prime} V_{w}}}
$$

Note that the above is simply softmax - the learning method is equivalent to logistic regression, but we have additional parameters (c) to estimate
Now, we can use gradient-based approaches to find word and context vectors that maximize this objective

- word2vec is a popular algorithm and open source application for training word vectors
- It has two modes of operation

CBOW or continuous bag of words predict the word using a window around the word Skip-gram does the reverse, it predicts the words in the context of the target word using the target word as the predictor

word 2 vec

a bit more in detail

Word vectors and syntactic/semantic relations

Word vectors map some syntactic/semantic relations to vector operations

- Paris - Franice + ltaly $=$ Rome
- king - man + woman $=$ queen
- ducks - duck + mouse $=$ mace

Other methods for building vector representations

- There (quite) a few other popular methods for building vector representations
- GloVe tries to combine local information (similar to word2vec) with global information (similar to SVD)
FastText makes use of characters (n -grams) within the word as well as their context
- Recently some models of 'embedding in context' have become popular

Using vector representations

- Dense vector representations are useful for many ML methods
- They are particularly suitable for neural network models
- 'General purpose' vectors can be trained on unlabeled data
- They can also be trained for a particular purpose, resulting in 'task specific'
vectors vectors
Dense vector representations are not specific to words, they can be obtained and used for any (linguistic) object of interest

.

Differences of the methods
...or the lack thereof

- It is often claimed, after excitement created by word 2 vec , that prediction-based models work better
- Careful analyses suggest, however, that word2vec can be seen as an approximation to a special case of SVD
- Performance differences seem to boil down to how well the hyperparameters are optimized
- In practice, the computational requirements are probably the biggest difference

Additional reading, references, credits

- Upcoming edition of the textbook (Jurafsky and Martin 2009, ch. 15 and ch.16) has two chapters covering the related material.
- See Levy, Goldberg, and Dagan (2015) for a comparison of different ways of obtaining embeddings.

Evaluating vector representations

- Like other unsupervised methods, there are no 'correct' labels
- Evaluation can be

Intrinsic based on success on firding analogy/synonymy
Extrinsic based on whether they improve a particular task (e.g., parsing, sentiment analysis)
Correlation with human judgment:

sumar smumerzan
4) 25 |

Summary

- Dense vector representations of linguistic units (as opposed to symbolic representations) allow calculating similarity/difference between the units
- They can be either based on counting (SVD), or predicting (word2vec, GloVe) - They are particularly suitable for ANNs, deep learning architectures Next:
- Sequence learning

\qquad

