Mathematical background
 Statistical Natural Language Processing

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2021

Some practical remarks
 (recap)

- Course web page: https://snlp2021.github.io (public) https://github.com/snlp2021/snlp/ (private)
- If you haven't already, please fill in the questionnaire on Moodle
- Assignment 1 will be released on Monday
- Do not forget to add yourself to assignments-match.txt if you want to be assigned to a random team
- The first quiz will be released (on Moodle) after the class
- For those who need material on Python, see the private course repository for links to last semester's course
- If you prefer a book to study, the book by Bird, Klein, and Loper (2009) is a good option. For an update in progress see https://www.nltk.org/book/

Today's lecture

- Some concepts from linear algebra
- A (very) short refresher on
- Derivatives: we are interested in maximizing/minimizing (objective) functions (mainly in machine learning)
- Integrals: mainly for probability theory

This is only a high-level, informal introduction/refresher.

Linear algebra

Linear algebra is the field of mathematics that studies vectors and matrices.

- A vector is an ordered sequence of numbers

$$
\boldsymbol{v}=(6,17)
$$

- A matrix is a rectangular arrangement of numbers

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

- A well-known application of linear algebra is solving a set of linear equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =6 \\
x_{1}+4 x_{2} & =17
\end{aligned}
$$

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right] \times\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
6 \\
17
\end{array}\right]
$$

Why study linear algebra?

Consider an application counting words in a document

the	and	of	to	in	\ldots
121	106	91	83	43	\ldots

Why study linear algebra?

Consider an application counting words in a document

	the	and	of	to	in	\ldots	
$($	121	106	91	83	43	\ldots	$)$

Why study linear algebra?

Consider an application counting words in multiple documents

	the	and	of	to	in	\ldots
document $_{1}$	121	106	91	83	43	\ldots
document $_{2}$	142	136	86	91	69	\ldots
document $_{3}$	107	94	41	47	33	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	

You should already be seeing vectors and matrices here.

Why study linear algebra?

- Insights from linear algebra are helpful in understanding many NLP methods
- In machine learning, we typically represent input, output, parameters as vectors or matrices (or tensors)
- It makes notation concise and manageable
- In programming, many machine learning libraries make use of vectors and matrices explicitly
- In programming, vector-matrix operations correspond to loops
- 'Vectorized' operations may run much faster on GPUs, and on modern CPUs

Vectors

- A vector is an ordered list of numbers $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right)$,
- The vector of n real numbers is said to be in vector space $\mathbb{R}^{n}\left(\boldsymbol{v} \in \mathbb{R}^{n}\right)$
- In this course we will only work with vectors in \mathbb{R}^{n}
- Typical notation for vectors:

$$
\boldsymbol{v}=\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

- Vectors are (geometric) objects with a magnitude and a direction

Geometric interpretation of vectors

- Vectors (in a linear space) are represented with arrows from the origin
- The endpoint of the vector $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ correspond to the Cartesian coordinates defined by v_{1}, v_{2}
- The intuitions often (!) generalize to higher dimensional spaces

Vector norms

- The norm of a vector is an indication of its size (magnitude)
- The norm of a vector is the distance from its tail to its tip
- Norms are related to distance measures
- Vector norms are particularly important for understanding some machine learning techniques

L2 norm

- Euclidean norm, or L2 (or L_{2}) norm is the most commonly used norm
- For $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$,

$$
\begin{gathered}
\|v\|_{2}=\sqrt{v_{1}^{2}+v_{2}^{2}} \\
\|(3,3)\|_{2}=\sqrt{3^{2}+3^{2}}=\sqrt{18}
\end{gathered}
$$

- L2 norm is often written without a subscript: $\|\boldsymbol{v}\|$

L1 norm

- Another norm we will often encounter is the L1 norm

$$
\begin{gathered}
\|v\|_{1}=\left|v_{1}\right|+\left|v_{2}\right| \\
\|(3,3)\|_{1}=|3|+|3|=6
\end{gathered}
$$

- L1 norm is related to Manhattan distance

Lp norm

In general, L_{P} norm, is defined as

$$
\|\boldsymbol{v}\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

In general, L_{p} norm, is defined as

$$
\|\boldsymbol{v}\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

We will only work with than L1 and L2 norms, but you may also see L_{0} and L_{∞} norms in related literature

Multiplying a vector with a scalar

- For a vector $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and a scalar a,

$$
a v=\left(a v_{1}, a v_{2}\right)
$$

- multiplying with a scalar 'scales' the vector

Vector addition and subtraction

For vectors $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and
$\boldsymbol{w}=\left(w_{1}, w_{2}\right)$

- $\boldsymbol{v}+\boldsymbol{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}\right)$

$$
(1,2)+(2,1)=(3,3)
$$

- $\boldsymbol{v}-\boldsymbol{w}=\boldsymbol{v}+(-\boldsymbol{w})$

$$
(1,2)-(2,1)=(-1,1)
$$

Dot (inner) product

- For vectors $\boldsymbol{w}=\left(w_{1}, w_{2}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$,

$$
w \boldsymbol{v}=w_{1} v_{1}+w_{2} v_{2}
$$

or,

$$
w \boldsymbol{v}=\|w\|\|v\| \cos \alpha
$$

- The dot product of two orthogonal vectors is 0
- $\boldsymbol{w} \boldsymbol{w}=\|\boldsymbol{w}\|^{2}$
- Dot product may be used as a similarity measure between two vectors

Cosine similarity

- The cosine of the angle between two vectors

$$
\cos \alpha=\frac{\boldsymbol{v} \boldsymbol{w}}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

is often used as another similarity metric, called cosine similarity

- The cosine similarity is related to the dot product, but ignores the magnitudes of the vectors
- For unit vectors (vectors of length 1) cosine similarity is equal to the dot product
- The cosine similarity is bounded in range $[-1,+1]$

Matrices

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, m} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, m}
\end{array}\right]
$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$
- Most operations in linear algebra also generalize to more than 2-D objects
- A tensor can be thought of a generalization of vectors and matrices to multiple dimensions

Matrices

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, m} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, m}
\end{array}\right]
$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$
- Most operations in linear algebra also generalize to more than 2-D objects
- A tensor can be thought of a generalization of vectors and matrices to multiple dimensions

Transpose of a matrix

Transpose of a $n \times m$ matrix is an $m \times n$ matrix whose rows are the columns of the original matrix.
Transpose of a matrix \boldsymbol{A} is denoted with \boldsymbol{A}^{\top}.

$$
\text { If } \boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right], A^{\top}=\left[\begin{array}{lll}
a & c & e \\
b & d & f
\end{array}\right]
$$

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

$$
2\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 \times 2 & 2 \times 1 \\
2 \times 1 & 2 \times 4
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 8
\end{array}\right]
$$

Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding element

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right]
$$

Note:

- Matrix addition and subtraction are defined on matrices of the same dimensions

Matrix multiplication

- if \boldsymbol{A} is a $n \times k$ matrix, and \boldsymbol{B} is a $k \times m$ matrix, their product \mathbf{C} is a $n \times m$ matrix
- Elements of $C, c_{i, j}$, are defined as

$$
c_{i j}=\sum_{\ell=0}^{k} a_{i \ell} b_{\ell j}
$$

- Note: $c_{i, j}$ is the dot product of the $i^{\text {th }}$ row of \boldsymbol{A} and the $j^{\text {th }}$ column of \boldsymbol{B}

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{11}=a_{11} b_{11}+a_{12} b_{21}+\ldots a_{1 k} b_{k 1} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{12}=a_{11} b_{12}+a_{12} b_{22}+\ldots a_{1 k} b_{k 2} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{1 m}=a_{11} b_{1 m}+a_{12} b_{2 m}+\ldots a_{1 k} b_{k m} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{21}=a_{21} b_{11}+a_{22} b_{21}+\ldots a_{2 k} b_{k 1} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{22}=a_{21} b_{12}+a_{22} b_{22}+\ldots a_{2 k} b_{k 2} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{2 m}=a_{21} b_{1 m}+a_{22} b_{2 m}+\ldots a_{2 k} b_{k m} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{n 1}=a_{n 1} b_{11}+a_{n 2} b_{22}+\ldots a_{n k} b_{k 1} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{n 2}=a_{n 1} b_{12}+a_{n 2} b_{22}+\ldots a_{n k} b_{k 2} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{n m}
\end{gathered}=a_{n 1} b_{1 m}+a_{n 2} b_{2 m}+\ldots a_{n k} b_{k m} .
$$

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots a_{i k} b_{k j} \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Dot product as matrix multiplication

In machine learning literature, the dot product of two vectors is often written as

$$
w^{\top} v
$$

For example, $\boldsymbol{w}=(2,2)$ and $\boldsymbol{v}=(2,-2)$,

$$
\left[\begin{array}{ll}
2 & 2
\end{array}\right] \times\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

Dot product as matrix multiplication

In machine learning literature, the dot product of two vectors is often written as

$$
w^{\top} v
$$

For example, $\boldsymbol{w}=(2,2)$ and $\boldsymbol{v}=(2,-2)$,

$$
\left[\begin{array}{ll}
2 & 2
\end{array}\right] \times\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=2 \times 2+2 \times-2=4-4=0
$$

- This is a 1×1 matrix, but matrices and vectors with single entries are often treated as scalars

Outer product

The outer product of two column vectors is defined as

$$
\begin{array}{r}
v w^{\top} \\
{\left[\begin{array}{l}
1 \\
2
\end{array}\right] \times\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=}
\end{array}
$$

Outer product

The outer product of two column vectors is defined as

$$
\begin{gathered}
v w^{\top} \\
{\left[\begin{array}{l}
1 \\
2
\end{array}\right] \times\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right]}
\end{gathered}
$$

Note:

- The result is a matrix
- The vectors do not have to be the same length

Identity matrix

- A square matrix in which all the elements of the principal diagonal are one and all other elements are zero is called identity matrix (I)

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Multiplying a matrix with the identity matrix has no affect

$$
\mathrm{I} A=A
$$

Matrix multiplication as transformation

- Multiplying a vector with a matrix transforms the vector
- Result is another vector (possibly in a different vector space)
- Many operations on vectors can be expressed with multiplying with a matrix (linear transformations)

Transformation examples

identity

- Identity transformation maps a vector to itself
- In two dimensions:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Transformation examples

stretch along the x axis

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Transformation examples

rotation

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]} \\
{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \times\left[\begin{array}{c}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]}
\end{gathered}
$$

Transformation examples

rotation

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]} \\
{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \times\left[\begin{array}{c}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]}
\end{gathered}
$$

Linear maps or linear functions

- A linear function has the properties:
$-f(x+y)=f(x)+f(y)$ (additivity)
$-f(a x)=a f(x)$ (homogeneity)
or more generally,
$-f(a x+b y)=a f(x)+b f(y)$
- A linear function can be expressed by matrix multiplication

Q: Is $f(x)=2 x+1$ a linear function?

Matrix-vector representation of a set of linear equations

Our earlier example set of linear equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =6 \\
x_{1}+4 x_{2} & =17
\end{aligned}
$$

can be written as:

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]}_{w} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
6 \\
17
\end{array}\right]}_{b}
$$

One can solve the above equation using Gaussian elimination (we will not cover it today).

Inverse of a matrix

Inverse of a square matrix \mathbf{W} is denoted \boldsymbol{W}^{-1}, and defined as

$$
\mathbf{W} \mathbf{W}^{-1}=\mathbf{W}^{-1} \mathbf{W}=\mathbf{I}
$$

The inverse can be used to solve equation in our previous example:

$$
\begin{aligned}
\mathbf{W} \boldsymbol{x} & =\mathbf{b} \\
\mathbf{W}^{-1} \mathbf{W} \boldsymbol{x} & =\mathbf{W}^{-1} \mathbf{b} \\
\mathbf{I} \boldsymbol{x} & =\mathbf{W}^{-1} \mathbf{b} \\
\boldsymbol{x} & =\mathbf{W}^{-1} \mathbf{b}
\end{aligned}
$$

Determinant of a matrix

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc}
$$

The above formula generalizes to higher dimensional matrices through a recursive definition, but you are unlikely to calculate it by hand. Some properties:

- A matrix is invertible if it has a non-zero determinant
- A system of linear equations has a unique solution if the coefficient matrix has a non-zero determinant
- Geometric interpretation of determinant is the (signed) change in the volume of a unit (hyper)cube caused by the transformation defined by the matrix

Eigenvalues and eigenvectors of a matrix

An eigenvector, \boldsymbol{v} and corresponding eigenvalue, λ, of a matrix \boldsymbol{A} are defined as

$$
A v=\lambda v
$$

- Eigenvalues an eigenvectors have many applications from communication theory to quantum mechanics
- A better known example (and close to home) is Google's PageRank algorithm
- We will return to them while discussing PCA and SVD

Derivatives

- Derivative of a function $f(x)$ is another function $f^{\prime}(x)$ indicating the rate of change in $f(x)$
- Alternatively: $\frac{\mathrm{d} f}{\mathrm{~d} x}(x), \frac{\mathrm{d} f(x)}{\mathrm{dx}}$
- Example from physics: velocity is the derivative of the position
- Our main interest:
- the points where the derivative is 0 are the stationary points (maxima, minima, saddle points)
- the derivative evaluated at other points indicate the direction and steepness of the curve defined by the function

Finding minima and maxima of a function

- Many machine learning problems are set up as optimization problems:
- Define an error function
- Finding the parameters minimizing the error
- We search for $f^{\prime}(x)=0$
- The value of $f^{\prime}(x)$ on other points tell us which direction to go (and how fast)

Partial derivatives and gradient

- In ML, we are often interested in (error) functions of many variables
- A partial derivative is derivative of a multivariate function with respect to a single variable, noted $\frac{\partial f}{\partial x}$
- A very useful quantity, called gradient, is the vector of partial derivatives with respect to each variable

$$
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

- Gradient points to the direction of the steepest change
- Example: if $f(x, y)=x^{3}+y x$

$$
\nabla f(x, y)=\left(3 x^{2}+y, x\right)
$$

- Integral is the reverse of the derivative (anti-derivative)
- The indefinite integral of $f(x)$ is noted $F(x)=\int f(x) d x$
- We are often interested in definite integrals

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

- Integral gives the area under the
 curve

Numeric integrals \& infinite sums

- When integration is not possible with analytic methods, we resort to numeric integration
- This also shows that integration is 'infinite summation'

Summary \& next week

- Some understanding of linear algebra and calculus is important for understanding many methods in NLP (and ML)
- See bibliography at the end of the slides if you need a 'more complete' refresher/introduction
- Do not forget the weekly quiz!

Mon Probability theory
Wed Information theory

Further reading

- A classic reference book in the field is Strang (2009)
- Shifrin and Adams (2011) and Farin and Hansford (2014) are textbooks with a more practical/graphical orientation.
- Cherney, Denton, and Waldron (2013) and Beezer (2014) are two textbooks that are freely available.
- A well-known (also available online) textbook for calculus is Strang (1991)
- Form more alternatives, see http://www.openculture.com/free-math-textbooks

Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. ISBN: 9780984417551. URL: http://linear.ups .edu/.
Bird, Steven, Ewanand Klein, and Edward Loper (2009). Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O'Reilly Media. ISBN: 9780596555719.

Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. URL: https://www.math.ucdavis.edu/~linear/.
Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition. CRC Press. ISBN: 978-1-4665-7958-3.

Further reading (cont.)

Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman. ISBN: 978-1-4292-1521-3.Strang, Gilbert (1991). "Calculus". In: Wellesley-Cambridge press. url:
https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/.Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. Isbn: 9780980232714.

