This page is currently under construction
Links to the course material will be provided in the schedule below after each class. You may want to have a look at the previous edition of the course for reference.

The course schedule

Week Monday Wednesday Friday
01 Apr 19
No class 
Apr 21
Introduction, organization 
[slides, handout]
Apr 23
Math preliminaries 
[slides, handout, notes]
02 Apr 26
Probability theory 
[slides, handout, notes]
Apr 28
Probabilty theory 
Apr 30
Information theory 
[slides, handout, notes]
03 May 03
ML intro 
[slides, handout, notes]
May 05
Classification 
May 07
lab 
04 May 10
Classification 
[slides, handout, notes]
May 12
Classification 
May 14
lab 
05 May 17
ML evaluation 
[slides, handout, notes]
May 19
Interim summary 
May 21
lab 
May 24
semester break
May 26
semester break
May 28
semester break
06 May 31
Artificial Neural Networks 
[slides, handout, notes]
Jun 02
ANNs 
Jun 04
lab 
07 Jun 07
Unsupervised ML 
[slides, handout, notes]
Jun 09
Unsupervised ML 
Jun 11
lab 
08 Jun 14
Unsupervised ML 
Jun 16
Dense vector representations 
[slides, handout]
Jun 18
lab 
09 Jun 21
Sequence learning 
[slides, handout]
Jun 23
Sequence learning 
Jun 25
lab 
10 Jun 28
Sequential ANNs 
[slides, handout]
Jun 30
Sequential ANNs 
Jul 02
lab 
11 Jul 05
Sequential ANNs 
Jul 07
Language models 
[slides]
Jul 09
lab 
12 Jul 12
Language models 
Jul 14
Language models / sequential RNNs 
Jul 16
lab 
13 Jul 19
Tokenization 
[slides]
Jul 21
POS tagging and morphology 
[slides]
Jul 23
lab 
14 Jul 26
Summary + Text classification (?) 
Jul 28
Exam discussion / preparation 
Jul 30
Exam 
[exam]